Как рассчитать снеговую нагрузку. Правильный расчет стропильной системы крыши. Виды нагрузок на стропила

Как рассчитать снеговую нагрузку. Правильный расчет стропильной системы крыши. Виды нагрузок на стропила

На этапе расчёта стропильной конструкции, выбора покрытия и монтажа всех элементов крыши примите во внимание особенности климата местности, где расположено здание. Это касается не только промышленных объектов и многоквартирных домов, но и частных коттеджей со скатными крышами. Учитывая непредсказуемость российских зим, важен расчёт снеговой нагрузки .

«Шапка» на одной из крыш в Московской области, создающая снеговую нагрузку

Чем опасны снеговые нагрузки?

Атмосферные осадки, в особенности снег, скапливающий на кровле, оказывают на неё существенное давление. Как может показаться, чем севернее дом, тем оно больше. Это так лишь отчасти. Дело в том, что из-за частых перепадов температур с положительных на отрицательные на крыше образуется ещё и лёд. Такие глыбы существенно тяжелее. Кроме того, вес мокрого снега может превышать вес обычного в три раза! Нетрудно догадаться, что под его воздействием может деформироваться конструкция крыши.

Последствия протечек из-за неправильного расчёта и монтажа крыши

Помимо этого, большие объёмы снега и льда могут повредить водостоки, а также представлять опасность для имущества, здоровья и даже жизни человека. Специально для этого в систему безопасности кровли входят , способствующие равномерному оттоку воды с поверхности крыши.

Карта и формула расчёта снеговой нагрузки

Для определения значения снеговой нагрузки необходимо знать 2 показателя: район России, где расположен дом (определяется по карте ниже) и угол наклона крыши.

Приложение 5 к СНиПу 2.01.07-85. Для увеличения нажмите на изображение

S = Sg * µ

S - значение снеговой нагрузки;

Sg - значение веса снежного покрова на 1м² горизонтальной поверхности (определяется в зависимости от района на карте по таблице ниже);

µ - коэффициент нагрузки на поверхность крыши в зависимости от угла её наклона.

  • Если угол наклона меньше 25°, то µ = 1;
  • Если угол наклона больше 25°, но меньше 60°, то µ=0,7
  • Если угол наклона больше 60°, то расчёт нагрузки не производится.

Расчёт снеговой нагрузки на крышу в Московской области

В качестве примера возьмём коттедж в Троицке с двускатной крышей, угол наклона которой 35°.

  • Это снеговой район |||. В этом случае Sg = 180 кгс/м².
  • Поскольку угол наклона находится в диапазоне от 25° до 60°, то µ=0,7
  • Подставляем полученные значения в формулу S = Sg * µ
  • S = 180 * 0,7 = 126 кгс/м²

Обратите внимание , что это значение является примерным. В случае со сложными крышами с множеством ендов и скатов, расположенных под разными углами, расчёт производить сложнее. Нагрузка в разных частях будет распределена неравномерно. Это может вызвать протечки и даже обрушение конструкции. Во избежание этого учитывайте все нюансы при расчёте и строительстве , от стропильной системы до монтажа системы безопасности.

На прочность и долговечность конструкций крыш существенное влияние оказывают снег, ветер, дождь, перепады температуры и другие физико-механические факторы, воздействующие на здание.

Расчет несущих конструкций зданий и сооружений выполняют по методу предельных состояний, при которых конструкции теряют способность сопротивляться внешним воздействиям, либо получают недопустимые деформации или местные повреждения.

Предельных состояний, по которым производится расчет несущих конструкций крыши, может быть два:

  • Первое предельное состояние достигается в том случае, когда в строительной конструкции исчерпана несущая способность (прочность, устойчивость, выносливость), а попросту, происходит разрушение конструкции. Расчет несущих конструкций ведется на максимально возможные нагрузки. Это условие записывается формулами: σ ≤ R или τ ≤ R, означающими, что напряжения развивающиеся в конструкции при приложении нагрузки не должны превышать предельно допустимых;
  • Второе предельное состояние характеризуется развитием чрезмерных деформаций от статических или динамических нагрузок. В конструкции происходят недопустимые прогибы, раскрываются узлы сочленений. Однако в целом конструкция не разрушается, но дальнейшая ее эксплуатация без ремонта невозможна. Это условие записывается формулой: f ≤ f нор, означающей, что прогиб появляющийся в конструкции при приложении нагрузки не должен превышать предельно допустимого. Нормируемый прогиб балки, для всех элементов крыши (стропил, прогонов и брусков обрешетки) составляет L/200 (1/200 длины проверяемого пролета балки L), см.

Расчет стропильной системы скатных крыш ведется по обоим предельным состояниям. Цель расчета: не допустить разрушения конструкций либо их прогиба выше допустимого предела. Для снеговых нагрузок, действующих на крышу, несущий каркас крыши рассчитывается по первой группе состояний - на расчетный вес снегового покрова S. Эту величину принято называть расчетной нагрузкой, ее можно обозначить, как S рас. Для расчета по второй группе предельных состояний: вес снега учитывается по нормативной нагрузке - эту величину можно обозначить, как S нор. . Нормативная снеговая нагрузка отличается от расчетной коэффициентом надежности γ f = 1,4. То есть расчетная нагрузка должна быть в 1,4 раза выше, чем нормативная:

S рас. = γ f × S нор. = 1,4× S нор.

Точную нагрузку от веса снегового покрова, требуемую для расчета несущей способности стропильных систем в конкретном месте строительства, нужно выяснить в районных строительных организациях или установить по картам СП 20.13330.2016 «Нагрузки и воздействия», вложенным в этот Свод Правил.

На рис. 3 и таблице 1 показаны нагрузки от веса снегового покрова для расчета по первой и второй группе предельных состояний.

Таблица 1

рис. 3. Районирование территории Российской Федерации по весу снегового покрова
Влияние на снеговую нагрузку угла наклона крыши, ендов и слуховых окон

В зависимости от уклона крыши и направления преобладающих ветров снега на крыше может быть значительно меньше и, как ни странно, больше, чем на плоской поверхности земли. При возникновении в атмосфере таких явлений, как снежный буран или метель, снежинки, подхваченные ветром, переносятся на подветренную сторону. После прохождения препятствия в виде конька крыши скорость движения нижних потоков воздуха снижается по отношению к верхним и снежинки оседают на крышу. В результате с одной стороны крыши снега лежит меньше нормы, а с другой больше (рис. 4).


рис. 4. Образование снеговых «мешков» на крышах с уклонами скатов от 15 до 40°

Снижение и увеличение снеговых нагрузок, зависящих от направления ветра и угла наклона скатов, изменяется коэффициентом µ, который учитывает переход от веса снегового покрова на земле к снеговой нагрузке на кровле. Например, на двухскатных крышах с углом скатов выше 15° и меньше 40° с наветренной стороны будет лежать 75%, а с подветренной 125% от того количества снега, который лежит на плоской поверхности земли (рис. 5).


рис. 5. Схемы нормативных снеговых нагрузок и коэффициенты µ (значение коэффициентов µ учитывающих более сложную геометрию крыш приведено в СНиП 2.01.07-85)

Толстый слой снега, скапливающийся на крыше и превышающий средненормативную толщину, называется снеговым «мешком». Они скапливаются в ендовах - местах, где пересекаются две крыши и в местах с близко расположенными слуховыми окнами. Во всех местах, где высока вероятность возникновения снегового «мешка», ставят спаренные стропильные ноги и выполняют сплошную обрешетку. Также здесь делают подкровельную подложку, чаще всего из оцинкованной стали, вне зависимости от материала основного покрытия кровли.

Снеговой «мешок», образующийся с подветренной стороны, постепенно сползает и давит на свес кровли, пытаясь обломить его, поэтому свес кровли не должен превышать размеры, рекомендуемые изготовителем кровельного покрытия. Например, для обычной шиферной кровли его принимают равным 10 см.

Направление преобладающего ветра определяется по розе ветров для данного региона строительства. Таким образом, после проведения расчета с наветренной стороны будут установлены одиночные стропила, с подветренной - спаренные. Если данные по розе ветров отсутствуют, необходимо рассматривать схемы равномерно распределенных и не равномерно распределенных снеговых нагрузок в их наиболее неблагоприятных сочетаниях.

С увеличением угла наклонов скатов снега на крыше остается меньше, он сползает под собственным весом. При углах скатов, равных или больше 60°, снега на крыше совсем не остается. Коэффициент µ в этом случае равен нулю. Для промежуточных значений углов скатов µ находится методом прямой интерполяции (усреднением). Так, например, для скатов с углом наклона 40° коэффициент µ будет равен 0,66, для 45° - 0,5, а для 50° - 0,33.

Таким образом, требуемые для подбора сечения стропил и шага их установки, расчетная и нормативная нагрузки от веса снега учитывающие углы наклонов скатов (Q µ.рас и Q µ.нор), должны быть умножены на коэффициент µ:

S µ.рас = S рас ×µ
S
µ.нор = S нор ×µ .

Влияние ветра на снеговую нагрузку

На пологих крышах с уклонами до 12% (примерно до 7°), проектируемых на местности типов A или B происходит частичный снос снега с крыши. В этом случае расчетная величина нагрузки от веса снега должна быть уменьшена применением коэффициента c e , но не менее чем c e = 0,5. Коэффициент c e вычисляется по формуле:

c e = (1,2-0,4√k )×(0,8+0,002l c ),

где l c - расчетный размер принимаемый по формуле l c = 2b — b 2 /l , но не более 100 м; k - принимается по таблице 3 для типов местности A или B; b и l - наименьшие размеры ширины и длины покрытия в плане.

На зданиях с крышами уклоном от 12 до 20% (примерно от 7 до 12°) расположенных на местности типов A или B, велчина коэффициента c e = 0,85. Снижение снеговой нагрузки коэффициентом c e = 0,85 не распространяется:

  • на крыши зданий в районах со среднемесячной температурой воздуха в январе выше -5°С, так как периодически образующаяся наледь препятствует сносу снега ветром (рис. 6);
  • у перепадов высот зданий и парапетов (подробности в СП 20.13330.2016), так как парапеты и разноуровневые крыши, примыкающие друг к другу препятствуют сдуванию снега.

рис. 6. Районирование территории Российской Федерации по средней месячной температуре воздуха, °С, в январе

Во всех других случаях, для скатных крыш применяется коэффициент c e = 1. Формулы определения расчетной и нормативной нагрузки от веса снега, учитывающие ветровой снос снега, будут выглядеть так:

S с.рас. = S рас. × c e - для первого предельного состояния;
S
с.нор. = S нор. × c e - для второго предельного состояния

Влияние температурного режима здания на снеговую нагрузку

На зданиях с повышенным тепловыделением (с коэффициентом теплопередачи более 1 Вт/(м²×°C)) снижение снеговой нагрузки происходит за счет таяния снега. При определении снеговых нагрузок для неутепленных покрытий зданий с повышенными тепловыделениями, приводящими к таянию снега, при уклонах кровли свыше 3% и обеспечении надлежащего отвода талой воды следует вводить термический коэффициент c t = 0,8. В остальных случаях c t = 1,0.

Формулы определения расчетной и нормативной нагрузки от веса снега, учитывающие термический коэффициент:

S t.рас. = S рас. × c t - для первого предельного состояния;
S
t.нор. = S нор. × c t - для второго предельного состояния

Определение снеговой нагрузки с учетом всех факторов

Снеговая нагрузка определяется произведением нормативной и расчетной нагрузки, взятой по карте (рис.3) и таблице 1 на все влияющие коэффициенты:

S снег.рас. = S рас. × µ × c e × c t - для первого предельного состояния (расчет на прочность);
S снег.нор. = S нор. × µ × c e × c t - для второго предельного состояния (расчет на прогиб)

Кровля осуществляет постоянную защиту здания от всех погодных и климатических проявлений, исключая контакт всех материалов с атмосферной или дождевой водой и являясь граничным слоем, отсекающим воздействие морозного воздуха на чердачное помещение.

Таковы основные и наиболее важные функции кровли в представлении неподготовленного человека, они вполне верны, но не отражают полный список функциональных нагрузок и испытываемых напряжений.

При этом, реальность гораздо суровее, чем это выглядит на первый взгляд, и воздействие на кровлю не ограничивается определенным износом материала.

Оно передается практически всем несущим элементам постройки — в первую очередь, стенам здания, на которые непосредственно опирается вся крыша, а в конечном счете — фундаменту.

Пренебрегать всеми создающимися нагрузками нельзя, это приведет к скорому (иногда — внезапному) разрушению постройки.

Основными и наиболее опасными воздействиями на кровлю и на всю конструкцию в целом являются:

  • Снеговые нагрузки.
  • Ветровые нагрузки.

При этом, снеговые действуют в течение определенных зимних месяцев, отсутствуя в теплое время, тогда как ветер создает воздействие круглый год. Ветровые нагрузки, имея сезонные колебания силы и направления, в той или иной степени присутствуют постоянно и опасны периодически случающимися шквальными усилениями.

Кроме того, интенсивность этих нагрузок имеет разный характер:

  • Снег создает постоянное статическое давление , которое можно регулировать путем очистки крыши и удаления скоплений. Направление действующих усилий постоянно и никогда не меняется.
  • Ветер действует непостоянно, рывками, внезапно усиливаясь или утихая. Направление может изменяться, что заставляет все конструкции крыши иметь солидный запас прочности.

Внезапный сход с крыши больших масс снега может причинить ущерб имуществу или людям, оказавшимся в местах падения. Кроме того, периодически случаются кратковременные, но чрезвычайно разрушительные атмосферные явления — ураганные ветра, сильные снегопады, особенно опасные при наличии мокрого снега, который на порядок тяжелее обычного. Предсказать дату таких событий практически невозможно и в качестве защитных мер можно лишь увеличивать прочность и надежность кровли и стропильной системы.

Сбор нагрузок на кровлю

Зависимость нагрузок от угла наклона крыши

Угол наклона крыши определяет площадь и мощность контакта кровли с ветром и снегом. При этом, снеговая масса имеет вертикально направленный вектор силы, а ветровое давление, вне зависимости от направления — горизонтальный.

Поэтому, принимая угол наклона более крутым, можно снизить давление снежных масс, а иногда и полностью исключить возникновение скоплений снега, но, при этом, увеличивается «парусность» крыши , ветровые напряжения возрастают.

Очевидно, что для снижения ветровых нагрузок идеальной была бы плоская кровля , тогда как именно она не позволит скатываться массам снега и поспособствует образованию больших сугробов, при таянии способных промочить всю постройку. Выходом из ситуации является выбор такого угла наклона, при котором максимально удовлетворяются требования как по снеговой, так и по ветровой нагрузкам, а они в разных регионах имеют индивидуальные значения.

Зависимость нагрузки от угла крыши

Вес снега на квадратный метр крыши в зависимости от региона

Количество осадков — показатель, напрямую зависящий от географии региона. Более южные районы снега почти не видят, более северные имеют постоянное сезонное количество снеговых масс.

При этом, высокогорные районы, вне зависимости от географической широты, имеют высокие показатели по количеству выпадающего снега, что, в сочетании с частыми и сильными ветрами, создает массу проблем.

Строительные Нормы и Правила (СНиП), соблюдение положений которых является обязательным к выполнению, содержат специальные таблицы, отображающие нормативные показатели количества снега на единицу поверхности в разных регионах.

ОБРАТИТЕ ВНИМАНИЕ!

Следует учитывать обычное состояние снеговых масс в данном районе. Мокрый снег в несколько раз тяжелее сухого.

Эти данные являются основой расчетов снеговых нагрузок, поскольку они вполне достоверны, а также приводятся не в средних, а в предельных значениях, обеспечивающих должный запас прочности при строительстве крыши.

Тем не менее, следует учитывать устройство кровли, ее материал, а также — наличие дополнительных элементов, вызывающих скопления снега, поскольку они могут существенно превышать нормативные показатели.

Вес снега на квадратный метр крыши в зависимости от региона на схеме ниже.

Регион снеговой нагрузки

Расчет снеговой нагрузки на плоскую крышу

Расчет несущих конструкций выполняется по методу предельных состояний, то есть таких, когда испытываемые усилия вызывают необратимые деформации или разрушения. Поэтому прочность плоской кровли должна превышать величину снеговой нагрузки для данного региона.

Для элементов крыши существует два типа предельных состояний:

  • Конструкция разрушается.
  • Конструкция деформируется, выходит из строя без полного разрушения.

Расчеты ведутся по обоим состояниям, имея целью получить надежную конструкцию, гарантированно выдерживающую нагрузку без последствий, но и без излишних затрат строительных материалов и труда. Для плоских крыш значения снеговых нагрузок будут максимальными, т.е. поправочный коэффициент уклона равен 1.

Таким образом, согласно таблицам СНиП, общий вес снега на плоской кровле составит величину норматива, умноженную на площадь кровли. Значения могут достигать десятки тонн, поэтому зданий с плоскими крышами в нашей стране практически не строят, особенно в регионах с высокими нормами осадков в зимнее время.

Расчет снеговой нагрузки на кровлю онлайн

Пример расчета снеговой нагрузки поможет наглядно продемонстрировать порядок действий, а также покажет возможную величину давления снега на конструкции дома.

Снеговая нагрузка на кровлю рассчитывается с помощью следующей формулы:

S = Sg * µ;

где S — давление снега на квадратный метр кровли.

Sg — нормативная величина снеговой нагрузки для данного региона.

µ — поправочный коэффициент, учитывающий изменение нагрузки на разных углах наклона кровли. От 0° до 25° значение µ принимается равным 1, от 25° до 60° — 0,7. При углах наклона кровли свыше 60° снеговая нагрузка не учитывается , хотя в реальности бывают скопления мокрого снега и на более крутых поверхностях.

Произведем подсчет нагрузки на кровлю площадью 50 кв.м, угол наклона — 28° (µ=0,7), регион — Московская область.

Тогда нормативная нагрузка составляет (по данным СНиП) 180 кг/кв.м.

Умножаем 180 на 0,7 — получаем реальную нагрузку 126 кг/кв.м.

Полное давление снега на кровлю составит: 126 умножаем на площадь кровли — 50 кв.м. Результат — 6300 кг . Таков расчетный вес снега на крыше.

Снеговое воздействие на кровлю

Расчет ветровой нагрузки производится подобным образом. За основу берется нормативное значение ветровой нагрузки, действующее в данном регионе, которое умножается на поправочный коэффициент высоты здания:

W= Wo * k;

Wo — нормативная величина по региону.

k — поправочный коэффициент, учитывающий высоту над поверхностью земли.

Роза ветров

Имеются три группы значений:

  • Для открытых участков земной поверхности.
  • Для лесных массивов или городской застройки с высотой препятствий от 10 м.
  • Для городских поселений или местностей со сложным рельефом с высотой препятствий от 25 м.

Все нормативные значения, как и поправочные коэффициенты содержатся в таблицах СНиП и должны учитываться при расчетах нагрузок.

ОСТОРОЖНО!

При проведении расчетов следует учитывать независимость снеговых и ветровых нагрузок друг от друга, а также — одновременность их воздействия. Общая нагрузка на кровлю — это сумма обоих значений.

В заключение необходимо подчеркнуть большую величину и неравномерность нагрузок, создаваемых снегом и ветрами. Значения, сопоставимые с собственным весом крыши, нельзя игнорировать, такие величины слишком серьезны. Невозможность регулировать или исключать их присутствие заставляет реагировать путем увеличения прочности и правильного выбора угла наклона.

Все расчеты должны опираться на СНиП, для уточнения или проверки результатов рекомендуется использовать онлайн-калькуляторы, которых много в сети. Лучшим способом станет применение нескольких калькуляторов с последующим сравнением полученных величин. Правильный расчет — основа долговременной и надежной службы кровли и всей постройки.

Полезное видео

Более подробно о кровельных нагрузках вы можете узнать из этого видео:

Вконтакте


Как следует из названия нагрузок, это внешнее давление которое будет оказываться на ангар посредством снега и ветра. Расчеты производятся для того что бы закладывать в будущее здание материалы с характеристиками, которые выдержат все нагрузки в совокупности.
Расчет снеговой нагрузки производится согласно СНиП 2.01.07-85* или согласно СП 20.13330.2016 . На данный момент СНиП является обязательным к исполнению, а СП носит рекомендательный характер, но в общем в обоих документах написано одно и тоже.

В СНИП указанно 2 вида нагрузок - Нормативная и Расчетная, разберемся в чем их отличия и когда они применяются: - это наибольшая нагрузка, отвечающая нормальным условиям эксплуатации, учитываемая при расчетах на 2-е предельное состояние (по деформации). Нормативную нагрузку учитывают при расчетах на прогибы балок, и провисание тента при расчетах по раскрытию трещин в ж.б. балках (когда не применяется требование по водонепроницаемости), а так же разрыву тентовой ткани.
- это произведение нормативной нагрузки на коэффициент надежности по нагрузке. Данный коэффициент учитывает возможное отклонение нормативной нагрузки в сторону увеличения при неблагоприятном стечении обстоятельств. Для снеговой нагрузки коэффициент надежности по нагрузке равен 1,4 т.е. расчетная нагрузка на 40% больше нормативной. Расчетную нагрузку учитывают при расчетах по 1-му предельному состоянию (на прочность). В расчетных программах, как правило, учитывают именно расчетную нагрузку.

Большим плюсом каркасно-тентовой технологии строительства в этом ситуации является ее свойство по "исключению" этой нагрузки. Исключение подразумевает, что осадки не скапливаются на крыше ангара, благодаря её форме, а так же характеристикам укрывающего материала.

Укрывающий материал
Ангар укомплектовывается тентовой тканью с определенной плотностью (показатель влияющий на прочность) и необходимыми вам характеристиками.

Формы крыши
Все каркасно-тентовые здания имеют покатую форму крыши. Именно покатая форма крыши позволяет снимать нагрузку от осадков с крыши ангара.


Дополнительно к этому стоит отметить, что тентовый материал покрыт защитным слоем полевинила. Полевинил защищает ткань от химических и физических воздействий, а так же имеет хорошую антиадгезию, что способствует
скатыванию снега под своим весом.

Снеговая нагрузка.

Есть 2 варианта определить снеговую нагрузку определенного местоположения.

I Вариант - посмотреть ваш населенный пункт в таблице
II Вариант - определите на карте номер снегового района, интересующего вас местоположения и переведите их в килограммы, по приведенной ниже таблице.

  1. Определите номер вашего снегового района на карте
  2. сопоставьте цифру с цифрой в таблице


Плохо видно? Скачайте все карты одним архивом в хорошем разрешении (формат TIFF).

Ветровой район
Ia I II III
IV
V VI VII
Wo (кгс/м2) 17 23 30 38 48 60 73 85

Расчётное значение средней составляющей ветровой нагрузки на высоте z над поверхностью земли определяется по формуле:

W=Wo*k

Wo - нормативное значение ветровой нагрузки, принимаемое по таблице ветрового района РФ.

k - коэффициент, учитывающий изменение ветрового давления по высоте, определяется по таблице, в зависимости от типа местности.

  • А - открытые побережья морей, озёр и водохранилищ, пустыни, степи, лесостепи и тундры.
  • B - городские территории, лесные массивы и др. местности, равномерно покрытые препятствиями более 10 м.

*При определении ветровой нагрузки типы местности могут быть различными для разных расчётных направлений ветра.

  • 5 м.- 0,75 А / 0.5 B .
  • 10 м.- 1 А / 0.65 B°.
  • 20 м.- 1,25 А / 0.85 B

Снеговые и ветровые нагрузки в городах РФ.

Город Снеговой район Ветровой район
Ангарск 2
3
Арзамас 3
1
Артем 2
4
Архангельск 4
2
Астрахань 1
3
Ачинск 3
3
Балаково 3
3
Балашиха 3
1
Барнаул 3
3
Батайск 2
3
Белгород 3
2
Бийск 4
3
Благовещенск 1
2
Братск 3
2
Брянск 3
1
Великие Луки 2
1
Великий Новгород 3
1
Владивосток 2
4
Владимир 4
1
Владикавказ 1
4
Волгоград 2
3
Волжский Волгогр. Обл 3
3
Волжский Самарск. Обл 4
3
Волгодонск 2
3
Вологда 4
1
Воронеж 3
2
Грозный 1
4
Дербент 1
5
Дзержинск 4
1
Димитровград 4
2
Екатеринбург 3
1
Елец 3
2
Железнодорожный 3
1
Жуковский 3
1
Златоуст 3
2
Иваново 4
1
Ижевск 5
1
Йошкар-Ола 4
1
Иркутск 2
3
Казань 4
2
Калининград 2
2
Каменск-Уральский 3
2
Калуга 3
1
Камышин 3 3
Кемерово 4
3
Киров 5
1
Киселевск 4
3
Ковров 4
1
Коломна 3
1
Комсомольск-на-Амуре 3
4
Копейск 3
2
Красногорск 3
1
Краснодар 3
4
Красноярск 2
3
Курган 3
2
Курск 3
2
Кызыл 1
3
Ленинск-Кузнецкий 3
3
Липецк 3
2
Люберцы 3
1
Магадан 5
4
Магнитогорск 3
2
Майкоп 2
4
Махачкала 1
5
Миасс 3
2
Москва 3
1
Мурманск 4
4
Муром 3
1
Мытищи 1
3
Набережные Челны 4
2
Находка 2
5
Невинномысск 2
4
Нефтекамск 4
2
Нефтеюганск 4
1
Нижневартовск 1
5
Нижнекамск 5
2
Нижний Новгород 4
1
Нижний Тагил 3
1
Новокузнецк 4
3
Новокуйбышевск 4
3
Новомосковск 3
1
Новороссийск 6
2
Новосибирск 3
3
Новочебоксарск 4
1
Новочеркасск 2
4
Новошахтинск 2
3
Новый Уренгой 5
3
Ногинск 3
1
Норильск 4
4
Ноябрьск 5
1
Обниск 3 1
Одинцово 3
1
Омск 3
2
Орел 3
2
Оренбург 3
3
Орехово-Зуево 3
1
Орск 3
3
Пенза 3
2
Первоуральск 3
1
Пермь 5
1
Петрозаводск 4 2
Петропавловск-Камчатский 8
7
Подольск 3
1
Прокопьевск 4
3
Псков 3
1
Ростов-на-Дону 2
3
Рубцовск 2
3
Рыбинск 1
4
Рязань 3
1
Салават 4
3
Самара 4
3
Санкт-Петербург 3
2
Саранск 4
2
Саратов 3
3
Северодвинск 4
2
Серпухов 3
1
Смоленск 3
1
Сочи 2
3
Ставрополь 2
4
Старый Оскол 3
2
Стерлитамак 4
3
Сургут 4
1
Сызрань 3
3
Сыктывкар 5
1
Таганрог 2
3
Тамбов 3
2
Тверь 3
1
Тобольск 4
1
Тольятти 4
3
Томск 4
3
Тула 3
1
Тюмень 3
1
Улан-Удэ 2
3
Ульяновск 4
2
Уссурийск 2
4
Уфа 5
2
Ухта 5
2
Хабаровск 2
3
Хасавюрт 1
4
Химки 3
1
Чебоксары 4
1
Челябинск 3
2
Чита 1
2
Череповец 4
1
Шахты 2
3
Щелково 3
1
Электросталь 3
1
Энгельс 3
3
Элиста 2
3
Южно-Сахалинск 8
6
Ярославль 4
1
Якутск 2
1

Снег выпадает зимой на всей территории России. С крыш его сдувается ветром, он испаряется под солнцем и снова выпадает. Изменение веса меняет изгиб несущих элементов крыши, крепления расшатываются, теряя прочность. Неожиданно большое количество выпавшего снега может стать причиной поломки крыши. Избежать этого можно, если при строительстве произвести расчет снеговой нагрузки.

Вес снежинок – сущая ерунда. Пока на улице будут отрицательные температуры, снег будет идти и накапливаться на крышах. Постепенно лежащий снег становится влажным от солнечного тепла, его плотность увеличивается до 300 кг на кубометр. Вес, которым накопившийся снег давит на поверхность, называется снеговой нагрузкой.

Рассмотрим процесс расчета давления снега на поверхности, чтобы учесть для проектирования достаточно прочных зданий и сооружений.

В России снег – регулярное погодное явление практически на всей территории. Разница в количестве выпадающего снега, продолжительности холодного периода, сезонных ветрах и количестве переходов температур через 0 0 С при окончании зимнего сезона.

Погодные условия отличаются не только в местностях с разными географическими координатами, но и в одном месте в разные годы. Однако многолетние измерения, проводимые метеорологами, позволяют узнать возможный максимум снежных осадков и рассчитать нормативную снеговую нагрузку для каждой местности.

Районное давление снега

Категории отображаются на карте , включенной в СНиП 2.01.07-85. Категории выделены цветом и пронумерованы.

При изменении статистики в границах категорий карта актуализируется. Нормативное значение для своего региона можно узнать, определив категорию места по карте.

Расчетная снеговая нагрузка

Нормативное значение только основа для расчета реально возможного веса снега. Просто использовать нормативное значение для расчета прочности нельзя, так как:

  • скаты крыши могут быть наклонными, снег будет разложен на большей площади;
  • ветра, сдувающие снег с кровли, в каждой местности свои;
  • окружающие строения изменяют влияние ветров;
  • теплопроводность крыши может привести к ускоренному таянию и снижению веса.

Для проектирования крыши с необходимой и достаточной надежной конструкцией следует учесть все факторы, влияющие на реальную ситуацию.

Формула расчета

Обязательная для применения проектировщиками формула вычисления снеговой нагрузки дана в СП 20.13330.2016 и выглядит следующим образом: S 0 = c b c t µ S g.

умножается на три коэффициента:

  • µ – коэффициент, учитывающий угол наклона ската крыши по отношению к горизонтальной поверхности.
  • c t термический коэффициент. Зависит от интенсивности выделения тепла через кровлю.
  • c b ветровой коэффициент, учитывающий снос снега ветром.

Присутствие в формуле коэффициентов определяет зависимость результата от некоторых условий.

Рассмотрим значения коэффициентов применительно к зданиям с габаритными разменами менее 100 метров и без сложных кровельных форм. Для крупногабаритных зданий или при ломаных рельефах кровли применяются более сложные расчеты.

Зависимость величины снежного давления на квадратный метр от угла наклона ската крыши объясняется тем, что:

  1. На плоских или слабонаклоненных кровлях снег не сползает. Коэффициент µ равен 1,0 при наклоне ската до 25°.
  2. Расположение кровли под углом к горизонтальной поверхности приводит к увеличению площади кровли, на которую выпадает норма снега для горизонтального квадрата. Коэффициент µ равен 0,7 на углах 25° – 60°.
  3. На крутых поверхностях осадки не задерживаются. Коэффициент µ равен 0, если наклон более 60° (нагрузка отсутствует).

Введение в формулу термического коэффициента c t позволяет учесть интенсивность таяния снега от выделения тепла через кровлю. Как правило, кровельный пирог здания проектируют с минимальными потерями тепла в целях экономии, а коэффициент c t при расчетах принимают равным 1,0. Для применения пониженного значения коэффициента 0,8 необходимо, чтобы на здании было неутепленное покрытие с повышенным тепловыделением с наклоном кровли более чем 3° и наличием действенной системы отвода талых вод.

Ветер сносит снег с крыш, снижая давящий на конструкцию вес. Ветровой коэффициент c b можно понизить с 1,0 до 0,85, но только в том случае, если выполняются условия:

  1. Есть постоянные ветра со скоростью от 4 м/с и выше.
  2. Средняя зимняя температура воздуха ниже 5 0 С.
  3. Угол ската кровли от 12° до 20°.

Рассчитанное значение перед применением в проектных решениях умножают на коэффициент надежности γ f = 1,4 , обеспечивая компенсацию теряющейся со временем прочности материалов конструкций.

Пример расчета нагрузки

Расчет снеговой нагрузки на кровлю проведем для здания, которое проектируется для строительства в Хабаровске. По карте определяем категорию района – II, по категории узнаем максимальное нормативное значение – до 120 кг/м 2 . Здание проектируется с двускатной крышей под углом 35 ° к поверхности. Значит, коэффициент µ равен 0,7.

Предполагается наличие в здании мансарды и применение эффективных теплоизолирующих материалов кровельного пирога. Коэффициент c t равен 1,0.

Здание будет построено в городе, этажность не превышает окружающие строения, расположенные на расстоянии двух высот здания. Коэффициент c b следует принять равным 1,0.

Таким образом, расчетное значение равно: S 0 = c b c t µ S g =1,0*1,0*0,7*120 =94 кг/м 2

Для расчета прочности, и не только конструкции крыши, но и фундамента, несущих элементов строения, применяем коэффициент надежности 1,4, получив для проектных вычислений значение 131,6 кг/м 2 .

К сведению домовладельцев

Рассчитав снеговую нагрузку , следует определить необходимость обустройства системы снегозадержания. Учитывать надо не только возможный сход снег, но и талую воду, образующую сосульки и замерзающую в трубах водостока. Для устранения этих явлений применяются системы обогрева карниза и водостока.