Как перемотать 3 фазный асинхронный двигатель. Выводы обмоток электродвигателя — схемы соединения. Наглядное и простое объяснение принципа работы в видео

Как перемотать 3 фазный асинхронный двигатель. Выводы обмоток электродвигателя — схемы соединения. Наглядное и простое объяснение принципа работы в видео

Во многих бытовых приборах сегодня используются электродвигатели. Главная их особенность в том, что они работают асинхронно. Это позволяет держать постоянную частоту вращения ротора даже при меняющихся нагрузках.

Все выпускаемые электродвигатели имеют разные конструктивные особенности. Каждая модификация может отличаться по количеству полюсов, типу ротора, и других составных частей. Технология перемотки электродвигателей делается по общему принципу, в некоторых нюансах могут быть различия.

Если устройство вышло из строя, то нужно обратиться в мастерскую. При ее отсутствии можно попытаться сделать перемотку двигателя в домашних условиях. Желательно иметь для этого необходимые навыки, но в целом этот процесс не такой сложный на вид.

«Движки» имеют два типа обмотки:

  • статорная;
  • роторная.


Если учесть, что конструкция и размеры устройств разные, можно дать общую инструкцию для перемотки двигателей. Остановимся на тех, которые используются в бытовых приборах и питаются от переменного тока.

Осмотр двигателя

В случае поломки следует извлечь двигатель из бытового прибора. Очистив составные элементы, проводится внешний осмотр обмоток. Главное точно определить, где произошел пробой. Иногда случается так, что сгорают роторная и статорная обмотки. И тогда нужно их полностью заменить.

Когда возникает неисправность, внутри корпуса двигателя повышается температура. Это приводит к нарушению изоляции на всех элементах. Поэтому, в ремонте электродвигателя заменяются обмотки, и изоляционные покрытия.

Подготовительные работы

Для начала разберемся, как правильно перемотать электродвигатель. Первое что следует сделать – это определить параметры провода и количество витков в катушке. Тут поможет интернет. На форумах люди обсуждают подобные проблемы, а так же рассказывают о личном опыте, как они перематывали двигатели.

ВАЖНО! Необходимо найти точно такую же модель устройства, в противном случае после ремонта «движок» может не запуститься!

При отсутствии нужной информации в интернете, можно узнать ее самостоятельно при осмотре «движка». При сильном выгорании «укладок» находим наиболее целый участок обмотки. Его нужно почистить.

Чтобы избавить провода от нагара воспользуйтесь растворителями. Теперь «катушки» не стоит жалеть, они уже не пригодны. Если не получается очистить обмотку растворителем, то можно ее обжечь.

Есть различные схемы перемотки электродвигателей. Прежде чем извлекать «катушки», следует обратить внимание, как они соединены между собой. И тогда в точности можно скопировать их сборку.

Выступающую верхушку «укладки» надо срезать. Для этого подготовим соответствующий инструмент, все зависит от сечения провода. Чем оно больше, тем серьезнее инструмент понадобится. Срезанную часть нужно разделить на отдельные провода. Так удобнее определить сечение и количество витков.

Сняв обмотку, проверяем железо, на которую она была намотана. Сталь должна быть гладкой без вмятин и заусенций. Дефекты способны повредить изоляционный слой медных проводов, что приведет к очередному пробою. Поэтому все неровности следует зачистить наждачной бумагой.

Если в стальных пазах имеется нагар, от него тоже следует избавиться. Это поможет избежать дальнейших сложностей при работе с изоляцией и проводами.


Как подобрать провод

Чтобы мощность электродвигателя была прежней, следует подбирать провод с таким же сечением, какое и было. Это позволит намотать заданное количество витков.

Если не удается этого сделать, то берется максимально приближенное сечение. Следует помнить о законе Ома, чем меньше диаметр проводника, тем выше его сопротивление.

ВАЖНО! К подбору проводов относятся очень серьезно. Неправильное сечение приведет к перегреву двигателя, изоляционный лак будет плавиться и как следствие приведет к замыканию!

Наматывать обмотку нужно с помощью шаблона, который изготавливается самостоятельно из картона. Он должен соответствовать размерам «железа». Чтобы добиться аккуратного расположения витков используют специальный станок для намотки провода. Это все, что нужно для перемотки двигателя.

Укладка, выполненная вручную, может иметь дефекты. Возникает вероятность уложить провода не плотно, что приведет к увеличению размеров обмотки, и трудностям ее монтажа.

Монтаж и пропитка

Перемотка статора электродвигателя своими руками не представляет особых трудностей. Главное в этом деле – аккуратность.

ВАЖНО! Вставленная в пазы изоляция не должна торчать. Поэтому лишнюю часть обрезают, иначе в процессе работы двигателя, она может задевать ротор!

Чтобы сделать полную изоляцию всех токопроводящих частей применяют специальный лак. На рынке он представлен в большом ассортименте. Но по факту он разделяется на два типа. Первый засыхает при обычных температурах, а второй только после термической обработки.

Проверка и включение

Перед первым после ремонта запуском двигателя его нужно как следует проверить. Для начала все вставленные «катушки» прозванивают. Это поможет узнать наличие обрыва или плохого контакта. Между «укладками» замеряется сопротивление, чтобы при включении не возникло короткого замыкания.

Сразу подавать 220 В на двигатель не стоит, лучше подать пониженное напряжение. Пусть ротор крутится медленно, тут главное выяснить, не греется ли двигатель. Если все прошло хорошо, и не появился дым, значит, ремонт двигателя прошел удачно.

В интернете есть много фото по перемотке двигателей. Это поможет новичкам наглядно ознакомиться с процессом.

Фото процесса перемотки электродвигателей

Электричество стало самым популярным видом энергии только за счет электрического двигателя. Двигатель, с одной стороны, - вырабатывает электрическую энергию, если его вал принудительно крутить, а с другой - способен преобразовать электрическую энергию в энергию вращения. До великого Тесла все сети были постоянного тока, а двигатели соответственно только постоянными. Тесла применил переменный ток и построил двигатель переменного тока. Переход на переменные двигатель был необходим чтобы избавиться от щеток - подвижного контакта. С развитием электроники трехфазным двигателям было дано новое качество - регулирование скорости тиристорными приводами. Именно в плане регулирования скоростью переменные проигрывали постоянным. Конечно, в болгарках есть щетки и коллектор, но здесь так было проще, а вот в холодильниках двигатель без щеток. Щетки достаточно неудобная штука и все производители дорогой техники стараются этот момент обойти.

Трехфазные двигатели самые распространенные в промышленности. Принято считать, по аналогии с постоянными двигателя, что у переменника также есть полюса. Пара полюсов - это одна катушка обмотки, намотанная на станке в виде овала и вставленная в пазы статора. Чем больше пар полюсов, тем меньше двигатель развивает оборотов и тем выше крутящий момент на валу ротора. У каждой фазы несколько пар полюсов. К примеру, если на статоре 18 пазов для обмотки, то на каждую фазу приходится 6 пазов и значит у каждой фазы 3 пары полюсов. Концы обмоток выводятся на клеммник на котором можно скоммутировать фазы либо в звезду, либо в треугольник. На двигателе приклепана бирка с данными, обычно "звезда / треугольник 380 / 220 В." Это означает, что при линейном напряжении сети в 380 В нужно включать двигатель по схеме звезда, а при линейном 220 В - треугольник. Наиболее распространена схема "звезда" и эту сборку проводов прячут внутрь двигателя, выводя на обмотки лишь три конца фаз.

Все двигатели крепятся к станкам и приспособам при помощи лап или фланца. Фланец - для крепления двигателя со стороны вала ротора в подвешенном состоянии. Лапы нужны для фиксации двигателя на плоской поверхности. Для того чтобы закрепить двигатель, нужно взять лист бумаги, поставить лапами на этот лист и точно разметить отверстия. После этого, приложить лист к поверхности крепежа и перенести размеры. Если двигатель плотно стыкуется с другой частью, то нужно выставить его относительно крепежа и вала, а только затем размечать крепление.

Двигатели бывают самых разных размеров. Чем больше размеры и масса, тем мощнее двигатель. Какие бы они ни были по размеры, изнутри все одинаковые. С передней стороны выглядывает вал со шпонкой, с другой стороны зад прикрыт накладной пластиной-кожухом.

Обычно клеммные колодки вставляются в коробки на двигателе. Это позволяет удобно производить монтаж, но в силу многих факторов такие колодки отсутствуют. Поэтому все делается надежной скруткой.

Бирка с паспортными данными говорит про мощность двигателя (0,75 кВт), скорость (1350 оборотов в минуту), частоту тока сети (50 Гц), напряжение треугольник - звезда (220/380), коэффициент полезного действия (72%), коэффициент мощности (0,75).

Здесь не указаны сопротивление обмоток и ток двигателя. Сопротивление достаточно мало, если измерять омметром. Омметр измеряет активную составляющую, но не касается реактивной, т.е индуктивности. При включении двигателя в сеть, ротор стоит на месте и вся энергия обмоток замыкается на нем. Ток в этом случае превышает номинальный в 3 - 7 раз. Затем ротор начинает разгоняться под действием вращающегося магнитного поля, индуктивность растет, растет реактивное сопротивление и ток падает. Чем меньше двигатель, тем выше его активное сопротивление (200 - 300 Ом) и тем больше ему не страшен обрыв фазы. Большие двигатели обладают малым активным сопротивлением (2 - 10 Ом) и для них смертелен обрыв фазы.

Формула для расчета тока двигателя следующая.

Если подставить значения для разбираемого двигателя, то получится следующее значение тока. Нужно учесть, что получившийся ток одинаковый по всем трем фазам. Здесь мощность выражается в кВт (0,75), напряжение в кВ (0,38 В), КПД и коэффициент мощности - в долях от удиницы. Получившийся ток - в амперах.

Разбору двигателя начинают с откручивая кожуха крыльчатки. Кожух нужен для безопасности персонала - чтобы руки не совали в крыльчатку. Был случай, инженер по охране труда, показывая студентам токарный цех, со словами "а вот так делать нельзя", сунул палец в дыру в кожухе и наткнулся на вращающуюся крыльчатку. Палец отрубило, студента хорошо запомнили урок. Все крыльчатки снабжаются кожухами. На предприятиях с малым уровнем доходности, вместе с кожухом снимают и крыльчатку.

Крыльчатка на валу фиксируется крепежной пластиной. В больших двигателях крыльчатка металлическая, в малых двигателях - пластиковая. Для съема нужно отогнуть усик пластинки и осторожно подтянув с двух сторон отвертками стягивать с вала. Если крыльчатка сломалась, то обязательно нужно поставить другую, ведь без нее нарушится охлаждение двигателя, что будет вызывать перегрев и в итоге станет причиной пробоя изоляции двигателя. Делается крыльчатка из двух полосок жести. Жесть изгибается полукольцами вокруг ротора, стягивается двумя болтами с гайками, чтобы плотно сидела на валу, а свободные концы жести отгибаются. Получится крыльчатка на четыре лопасти - дешево и сердито.

Важным элементом является шпонка на валу двигателя. Шпонка случит для виксации ротора в посадочной втулке или шестерне. Шпонка препятствует проворачиваю ротора относительно посадочного элемента. Набивать шпонку - тонкое дело. Лично я вначале немного насаживаю шестерню на ротор, набиваю ее на 1/3 и только затем вставляю шпонку и немного забиваю ее. После насаживаю всю шестерню вместе со шпонкой. При таком способе шпонка не вылезет в другой стороны. Здесь все дело в проточке канавки под шпонку. Со стороны ближней к корпусу двигателя канавка для шпонки имеет вид горки по которой очень плавно и легко шпонка выезжает. Бывают и другие виды канавок - закрытые с овальной шпонкой, но более распространены шпонки квадратного сечения.

Со стороны обоих крышек есть болты. Для дальнейшей разборки двигателя их нужно выкрутить и сложить в баночку - чтобы не потерять. Эти болты крепят крышки в статору. В крышках плотно сидят подшипники. После выкручивая всех болтов крышки должны сойти, но они укоревают и сидят очень плотно. Нельзя ломами или отвертками, цепляя за уши для крепления кожуха сдирать крышки. Крышки хоть и сделаны из дюраля или чугуна, но очень ломкие. Проще всего ударить по валу через бронзовую надставку, или поднять двигатель и валом сильно ударить по твердой поверхности. Съеник также может сломать крышки.

Если крышки подались - все отлично. Одна сойдет хорошо, вторую через двигатель нужно выбить палкой. Подшипники нужно выбивать палкой с обратной стороны крышки. Если же подшипник не сидит в крышке, а болтается, то нужно взять керн и накернить всю поверхность посадки подшипника. Затем набить подшипник. Подшипник не должен давать биение и скрип. При ремонте неплохо ножом вскрыть закрытые подшипники ножом, удалить старую смазку и заложить на 1/3 объема новую смазку.

Статор асинхронного двигателя переменного тока изнутри покрыт обмотками. Со стороны шпонки на роторе эти обмотки считаются лобовыми и это перед двигателя. На лобовые обмотки приходят все концы катушек и здесь катушки собираются в группы. Для сборки обмоток нужно намотать катушки, вставить в пазы статора изоляционные прокладки, которые отделят стальной статор от покрытой изоляцией медной проволоки обмотки, заложить обмотки и сверху накрыть вторым слоем изоляции и зафиксировать обмотки изоляционными палочками, сварить концы обмоток, натянуть на них изоляцию, вывести концы для подключения напряжения, пропитать весь статор в ванне с лаком и высушить статор в печи.

Ротор асинхронного двигателя переменного тока короткозамкнут - нет обмоток. Вместо них набор трансформаторной стали круглого сечения с несимметричной формой. Видно, что канавки идут по спирали.

Одним из методов запуска трехфазного двигателя линейного напряжения от двухпроводной сети фазного напряжения является включение между двумя фазами рабочего конденсатора. К сожалению, рабочий конденсатор не может запустить двигатель, нужно двигатель крутануть за вал, но это опасно, но можно параллельно рабочему конденсатору включить дополнительный пусковой конденсатор. При таком подходе двигатель будет запускаться. Однако, при достижении номинальных оборотов, пусковой конденсатор нужно отключить, оставив только рабочий.

Рабочий конденсатор выбирается из расчета 22 мкФ на 1 кВт двигателя. Пусковой конденсатор выбирается из расчета в 3 раза больше рабочего конденсаторы. Если есть двигатель на 1,5 кВт, то Ср = 1,5*22 = 33 мкФ; Сп = 3*33 = 99 мкФ. Конденсатор нужен только бумажный с напряжением минимум 160 В при включении обмоток в звезду и 250 В при включении обмоток в треугольник. Стоит отметить, что лучше использовать включение обмоток в звезду - больше мощности.

Китайцы не сталкиваются с проблемой сертификации или регистрации, поэтому все нововведения из журналов "Радио" и "Моделист кструктор" делаются моментально. Например, вот такой трехфазный двигатель, который возможно включать на 220 В причем в автоматичесаком режиме. Для этого рядом с лобовыми обмотками расположена подковообразная пластина с нормальнозамкнутым контактом.

В распределительной коробке вместо клеммника вставлены конденсаторы. Один на 16 мкФ 450 В - рабочий, второй на 50 мкФ 250 В - пусковой. Почему такая разница в напряжении непонятно, видимо пихали то, что было.

На роторе двигателя расположена подпружиненная пластмассина, которая под действием центробежной силы давит на подковообразный контакт и размыкает цепь пускового конденсатора.

Получается, что включении двигателя оба конденсаторы подключены. Ротор раскручивается до определенных оборотов, при которых китайцы считают, что запуск завершен, пластина на роторе смещается, надавливая на контакт и отключая пусковой конденсатор. Если оставить пусквой конденсатор подключенным, то двигатель будет перегреваться.

Для запуска двигателя от системы 380 В нужно отключить конденсаторы, вызвонить обмотки и подключить напряжение трехфазной сети к ним.

Всем удачного разбора.

В быту и небольших мастерских используются электродвигатели. Иногда они выходят из строя . Определить, можно ли их отремонтировать самостоятельно, или необходимо обращаться к мастеру, поможет эта статья. Неисправности электродвигателей можно разделить на две группы - механические, например, заклинивший подшипник или оборванный вал и электрические - механический обрыв обмотки или выход её из строя из-за перегрева электродвигателя.

Неисправности электродвигателей

Причин перегрева электродвигателя может быть много, но основная причина — это неправильно подобранная защита от превышения номинального тока или её полное отсутствие.

Электродвигатели, используемые в быту, можно разделить на две группы

  • асинхронные с короткозамкнутым или с фазным ротором, автомобильные генераторы
  • коллекторные электродвигатели постоянного и переменного тока

Каждый тип электродвигателей имеет свои особенности при перемотке сгоревших обмоток.

Асинхронные двигатели с короткозамкнутым или фазным ротором

Перед ремонтом электродвигатель необходимо очистить ветошью от пыли и грязи. Очищенный двигатель подвергают полной разборке . Перед заменой обмоток шкив или муфту, находящиеся на переднем валу электродвигателя, можно не снимать, но с ними нельзя оценить состояние переднего подшипника. Пришедшие в негодность подшипники электродвигателя могут быть причиной выхода из строя двигателя .

При отсутствии горелых мест и характерного запаха обмотки отсоединяют друг от друга и прозванивают мегомметром изоляцию друг относительно друга и корпуса и тестером проверяют целостность. Если изоляция не повреждена, а тестер показывает обрыв, то можно попробовать найти место обрыва и устранить неисправность без перемотки. Часто обрывается провод, выходящий из двигателя. В этом случае его можно заново припаять или заменить.

При отсутствии обрывов и целостной изоляции возможная неисправность - это межвитковое замыкание . В трехфазных электродвигателях, подключённых к трехфазной сети, это проверяется достаточно просто. Необходимо токоизмерительными клещами или амперметром измерить ток на всех фазах поочерёдно или, если есть возможность, то одновременно. Разность значений в 2–3 раза однозначно говорит о межвитковом замыкании и необходимости перемотки. Этими же методами проверяют ротор в электродвигателях с фазным ротором.

В однофазных или трехфазных, но подключённых в однофазную сеть двигателях о витковом замыкании говорит сильный нагрев при включении без нагрузки, при условии отсутствия обрывов, нарушений изоляции, механических неисправностей двигателя и пусковой аппаратуры. Например, однофазный двигатель на старых стиральных машинах греется при постоянно включённой пусковой обмотке.

Если принято решение о перемотке электродвигателя, то лучше всего обратиться для ремонта в специализированную мастерскую . В «домашних» условиях очень сложно качественно выполнить эту работу, что может привести к быстрому выходу его из строя. Но если есть необходимость или желание произвести ремонт электродвигателя своими руками, то в youtube по запросу «перемотка электродвигателей своими руками» можно найти видеоролики с подробными инструкциями.

Перемотка

Процесс перемотки можно разделить на три этапа

  • Разборка
  • Намотка
  • Сборка

Разборка

Нужно продолжать разборку и удалить обмотки - полностью или, если позволяет конструкция, только повреждённые, чтобы перематывать только их. Перед полным удалением разрезают нитки, связывающие провода вместе и зарисовывают схему соединения. Проще всего удалить старые обмотки путём выжигания газовой горелкой или на костре. Можно поставить статор «на попа» на кирпичи, заполнить дровами и поджечь.

Снять обмотки можно также с помощью зубила и молотка, но в этом случае труднее определить схему подключения и порядок укладки обмоток в пазы.

В однофазных двигателях иногда можно снять одну обмотку не трогая остальные. В этом случае нужно внимательно рассмотреть, как крепятся обмотки и снять повреждённую.

Фазный ротор разбирается аналогично, но перед выжиганием нужно снять токосъемные кольца.

Выжженные обмотки аккуратно вынимают из пазов, стараясь хотя бы одну сохранить целой. Это необходимо для определения размеров обмотки, сечения проволки и числа витков. При разборке также зарисовывают схему укладки обмоток в пазы с указанием направления намотки. Если известен тип электродвигателя, данные для ремонта можно найти в соответствующих справочниках.

Намотка

Зная количество обмоток, размер каждой и число витков путём умножения можно определить нужную длину проволки. Сечение провода берётся такое же, как на сгоревшем. Его измеряют штангенциркулем или микрометром . Если сечение взять меньше, то двигатель будет перегреваться при номинальных нагрузках, а если больше, то проволка может не поместиться в своих пазах.

Намотка обмоток выполняется на станке, аналогичному тем станкам, на которых мотаются катушки трансформатора. После намотки нужного количества витков обмотка вынимается из станка, перевязывается обмоточной ниткой и откладывается в сторону. Процесс повторяется столько раз, сколько необходимо обмоток.

В пазы вставляют новые прокладки из электроизоляционного материала. Эти прокладки называют «гильзы». Толщину и материал можно определить по справочнику. Если нет данных на перематываемый двигатель, можно взять на аналогичной мощности. Длина берётся на несколько миллиметров длиннее толщины статора, ширина такой, чтобы полностью закрыть внутреннюю поверхность паза.

Согласно схеме укладывают в пазы обмотки, соблюдая направление намотки. Если в один паз укладывается две обмотки, а также в местах соприкосновения прокладывают полоски изоляционного материала.

Для укладки проволки в пазы используется специальный инструмент - трамбовка. Уложенные обмотки закрепляются прокладками из того же материала, из которого изготавливались гильзы. Эти прокладки называют «стрелки». Длина стрелок равна длине гильз, а ширина вполовину меньше.

Закреплённые обмотки соединяются между собой скрутками, которые пропаиваются. К тем выводам, на которые будет подаваться напряжение, подключают провода соответствующего сечения и длины. Их необходимо промаркировать с указанием начала и конца.

Соединённые обмотки увязывают обмоточной ниткой или шпагатом. Провода выводят наружу через отверстие в корпусе статора и подключают к клеммнику.

Перемотанный статор пропитывают лаком. Для этого его полностью погружают в лак с последующей сушкой. Температура пропитки и сушки зависят от используемого лака и указываются в инструкции.

Фазный ротор перематывается аналогично, только на вал двигателя одеваются токосъемные кольца, к которым подключаются провода.

Сборка

Собранный и высушенный двигатель можно собирать. Перед сборкой проверяют подшипники и при необходимости меняют в них смазку или сами подшипники. После сборки двигатель проверяется на целостность изоляции и работоспособность в режиме холостого хода и под нагрузкой, с измерением тока на всех фазах.

Коллекторные электродвигатели постоянного и переменного тока

Прежде всего неисправность видна по увеличившемуся искрению на коллекторе и нагреву. Вначале необходимо почистить, а при необходимости проточить и продорожить коллектор. Если это не помогает, то нужно омметром последовательно замерить сопротивление последовательно между всеми соседними пластинами коллектора. Если значения значительно отличаются друг от друга, то вышел из строя коллектор или витковое в обмотках якоря (в двигателе переменного тока - ротора). В этом случае двигатель нужно отдать на ремонт в специализированную организацию . Дома отремонтировать его практически невозможно.

В том случае, если якорь целый, проверяют обмотки возбуждения на целостность омметром и на витковое замыкание. Для этого их соединяют последовательно, при необходимости закорачивая щётки или зачищая изоляцию на соединительных проводах. На соединённые обмотки подают пониженное напряжение 12–36 v. Напряжение на повреждённой обмотке будет значительно пониженным. Её заменяют тем же способом, как в однофазных двигателях малой мощности.

Перемотка обмотки асинхронного двигателя на гибридную обмотку «славянка»

При перемотке бесколлекторного двигателя его можно перемотать по технологии «славянка». Метод заключается в намотке тонкой проволокой дополнительных обмоток статора. Двигатели, намотанные по этому методу, имеют повышенный пусковой и рабочий момент, перегрузочную способность и КПД, пониженный пусковой ток и уровень шума. Из-за «мягкой» нагрузочной характеристики их используют на электротранспорте.

Трёхфазные электродвигатели получили большое распространение как в промышленном использовании, так и в личных целях благодаря тому что они значительно эффективнее двигателей для обычной двухфазной сети.

Трехфазный асинхронный двигатель представляет собой устройство, состоящее из двух частей: статора и ротора, которые разделены воздушным зазором и не имеют никакой механической связи друг с другом.

На статоре расположены три обмотки, намотанные на специальном магнитопроводе, который набран из пластин специальной электротехнической стали. Обмотки намотаны в пазах статора и расположены под углом в 120 градусов друг к другу.

Ротор представляет собой конструкцию, опирающуюся на подшипники, имеющую крыльчатку для вентиляции. В целях электропривода ротор может иметь прямую связь с механизмом либо через редукторы или другие системы передачи механической энергии. Роторы в асинхронных машинах могут быть двух видов:

    • Короткозамкнутый ротор, который представляет собой систему проводников соединенных с торцов кольцами. Образуется пространственная конструкция, напоминающая беличье колесо. В роторе индуцируются токи, создающее свое поле, взаимодействующее с магнитным полем статора. Это и приводит в движение ротор.
    • Массивный ротор – это цельная конструкция из ферромагнитного сплава, в которой одновременно индуцируются токи и являющаяся магнитопроводом. Благодаря возникновению в массивном роторе вихревых токов идет взаимодействие магнитных полей, которое и является движущей силой ротора.

Главной движущей силой в трехфазном асинхронном двигателе является вращающееся магнитное поле, которое возникает, во-первых, благодаря трехфазному напряжению, а, во-вторых, взаимному расположению обмоток статора. Под его воздействием в роторе возникают токи, создающее поле, которое взаимодействует с полем статора.

Асинхронным двигатель называют из-за того, что частота вращения ротора отстает от частоты вращения магнитного поля, ротор постоянно пытается «догнать» поле, но его частота всегда меньше.

    • Простота конструкции, которая достигается за счет отсутствия коллекторных групп, имеющие быстрый износ и создающие дополнительное трение.
    • Для питания асинхронного двигателя не требуется дополнительных преобразований, он может питаться прямо из промышленной трехфазной сети.

Конечно, трехфазные машины не лишены недостатков

    • Асинхронные электродвигатели имеют чрезвычайно малый пусковой момент, что ограничивает сферу их применения.
    • При запуске эти двигатели потребляют большие токи при пуске, которые могут превышать допустимые в конкретной системе электроснабжения.
    • Асинхронные двигатели потребляют немалую реактивную мощность, которая не приводит к увеличению механической мощности двигателя.

Различные схемы подключения асинхронных двигателей к сети 380 вольт

Для того чтобы заставить работать двигатель существует несколько различных схем подключения, наиболее используемые среди них — звезда и треугольник.

Как правильно подключить трехфазный двигатель «звездой»

Такой способ подключения применяется в основном в трехфазных сетях с линейным напряжением 380 вольт. Концы всех обмоток: C4, C5, C6 (U2, V2, W2), - соединяются в одной точке. К началам обмоток: C1, C2, C3 (U1, V1, W1), — через аппаратуру коммутации подключаются фазные проводники A, B, C (L1, L2, L3). При этом напряжение между началами обмоток будет 380 вольт, а между местом подключения фазного проводника и местом соединения обмоток буде составлять 220 вольт.

На табличке электродвигателя указывается возможность подключения по способу «звезда» в виде символа Y, а также может указываться и можно ли подключить по другой схеме. Соединение по такой схеме может быть с нейтралью, которая подключается к точке соединения всех обмоток.

Такой подход позволяет эффективно защитить электродвигатель от перегрузок при помощи четырехполюсного автоматического выключателя.

Соединение «звездой» не позволяет электродвигателю, приспособленному для сетей 380 вольт развить полную мощность в силу того, что на каждой отдельной обмотке будет напряжение в 220 вольт. Однако, такое соединение позволяет не допустить перегрузки по току, старт электродвигателя происходит плавно.

В клеммной коробке будет сразу видно, когда электродвигатель соединен по схеме «звезда». Если есть перемычка между тремя выводами обмоток, то это однозначно говорит о том, что применяется именно эта схема. В любых других случаях применяется другая схема.

Выполняем соединение по схеме «треугольник»

Для того чтобы трехфазный двигатель мог развить свою максимальную паспортную мощность используют подключение, которое получило название «треугольник». При этом конец каждой обмотки соединяют с началом последующей, что в действительности образует на принципиальной схеме треугольник.

Выводы обмоток соединяют следующим образом: C4 соединяют с C2, С5 с C3, а С6 с C1. При новой маркировке это выглядит так: U2 соединяется с V1, V2 с W1, а W2 cU1.

В трехфазных сетях между выводами обмоток будет линейное напряжение 380 вольт, а соединение с нейтралью (рабочим нулем) не требуется. Такая схема имеет особенность еще и в том, что возникают большие пусковые токи, которые может не выдержать проводка.

На практике иногда применяют комбинированное подключение, когда на этапе запуска и разгона используется подключение «звездой», а в рабочем режиме специальные контакторы переключают обмотки на схему «треугольник».

В клеммной коробке подключение треугольником определяется наличием трех перемычек между клеммами обмоток. На табличке двигателя возможность подключения треугольником обозначается символом Δ, а также может указываться мощность, развиваемая при схеме «звезда» и «треугольник».

Трехфазные асинхронные двигатели занимают значительную часть среди потребителей электроэнергии благодаря своим очевидным достоинствам.

Наглядное и простое объяснение принципа работы в видео

Бытовые роторы часто применяются в различных инструментах. Они бывают постоянного и переменного тока. Перемотать электродвигатель в домашних условиях в таких приборах довольно сложно. Сначала производится разборка агрегатов со складыванием всех болтов в коробку. Рекомендуется на её дно положить магнит, чтобы болты, шпильки и гайки не потерялись.

Определение неисправности

Роторы постоянного тока шуруповёртов, миксеров и вентиляторов бывают коллекторные и бесщёточные. У последних двигателей коммутация обмоток, расположенных на статоре, происходит с помощью контроллера. Поэтому перед перемоткой необходимо точно убедиться в исправности ключей и самого контроллера. Электрические двигатели переменного тока делятся на:

Для определения неисправности обмоток ротора используют специальный индукционный прибор. Установить поломку обмоток асинхронного двигателя можно с помощью тестера или омметра. Иногда применяют специализированные электронные приборы для выявления короткозамкнутых витков.

Неисправность роторов чаще всего бывает из-за замыкания в якоре. Отпаивая проводники от контактной группы и проверяя их на короткое замыкание, находят неисправность контактов или витков ротора. В случае замыкания последних поломку устраняют путём замены провода. Если мало витков, а провод ротора толстый и без повреждений, то делают его хорошую изоляцию, подкладывая пластинку из картона или ткани, смоченную изоляционным лаком.

В случае замыкания в контактной группе необходим её ремонт или замена. Можно вырезать тонкий паз между замкнутыми контактами и вставить пластинку из текстолита, проклеенную эпоксидным клеем. Наждачной бумагой устраняют неровности на контактной группе.

Особенности процесса

Для перемотки электродвигателей своими руками необходимо обладать хотя бы минимальными понятиями о способах подключения обмоток двигателей. Если перемотка производится впервые, необходимо хорошо изучить этот вопрос. Следует также обратить особое внимание на полярность обмоток и направление движения витков.

У некоторых заводских катушек провод сначала наматывают в одном направлении, а затем возвращаются обратно. При разборке необходимо витков 10 размотать поштучно, освободив катушку от изоляции, после чего точно определить и записать направление витков в обмотке.

Работа со статором

Сначала составляют схему расположения и подключения обмоток электродвигателя. Если двигатель трёхфазный, то аккуратно составляют схему катушек для каждой фазы. Они намотаны обычно одним проводом. Только после хорошего изучения и правильного составления схемы подключения обмоток можно приступить к их разборке и удалению. Лучше пометить обмотки разной краской и сфотографировать. Также нужно проверить, можно ли разобраться по фотографиям и схемам.

Перед перемоткой статора электродвигателя изготавливают шаблон по его размеру. Ширина равна размеру между пазами, в который будет укладываться катушка. Для изоляции статора от обмотки в пазы вставляют пластинки из картона или специального изоляционного материала. При укладке катушки в пазы используют деревянную или пластмассовую лопатку - трамбовку.

После намотки одной катушки провод не откусывают, катушку укладывают в пазы и продолжают мотать на шаблон. Все катушки одной фазы мотают цельным проводом , не перекусывая его. Перематывают сначала все витки одной из фаз, поочерёдно укладывая их. Аналогично мотают и укладывают катушки для остальных фаз. Верхнюю часть обмотки в пазах статора над витками закрывают пластинками из того же изоляционного материала, что и в самих пазах статора.

После намотки и укладки катушек одной из фаз обязательно производят обвязку и формируют катушки в ровные пучки, стараясь, чтобы витки были в одной связке и не касались корпуса статора. Если катушка великовата и прикасается к корпусу, то на неё одевают разрезанный кембрик, после чего обвязывают. Касание проводов корпуса вне изоляции недопустимо, так как при вибрации от электромагнитного поля лак может протереться, в результате чего катушка замкнёт на корпус. После укладки проверяют омметром сопротивление.

Количество витков во всех катушках необходимо точно соблюдать во избежание перегревания некоторых обмоток. Особое внимание и аккуратность необходимы, чтобы избежать перехлёстов витков в обмотке. Кроме того, необходимо следить, чтобы провод не завязывался в виточный узел и не был с обтёртой изоляцией. Все элементы, выходящие за пределы корпуса пазов, аккуратно утрамбовывают.

Выводы от катушек заправляют в изоляционные трубки - кембрики. Они должны быть не только из материала с хорошей изоляцией, но обладать устойчивостью к нагреванию провода. Во избежание плавления необходим класс изоляции не ниже ранее используемого. Классы стойкости изоляции к температуре:

Проверка и сборка

Далее делают сборку двигателя, наживив основные болты для «прозвонки» и проверки токов каждой фазы. С помощью токовых клещей проверяют токи обмоток каждой из фаз через нагрузку и автоматический выключатель. Они должны быть одинаковыми. Затем двигатель собирают, закручивая все болты и проверяя его на правильность вращения и работу в холостом режиме.

Если всё работает нормально, то механизм разбирают снова для покрытия обмоток статора лаком. Статор помещают в лак для пропитки обмоток и заполнения пустот. Затем его поднимают, давая стечь лаку, и сушат на открытом воздухе или в специальной сушилке. Для ускорения сушки применяют лампу накаливания мощностью 0,5-1 кВт, вставленную в статор и включённую в сеть.

После просушки двигателя производят его полную сборку, ещё раз проверяют сопротивление изоляции. Делают проверку двигателя на холостом ходу. Лучше для этой цели использовать понижающий трансформатор и автоматический выключатель (желательно УЗО). Только после проверки можно использовать двигатель на полном напряжении.

Правильно провести перемотку помогут следующие советы специалистов:

При проведении всех работ необходимо пользоваться исправным инструментом, а также заведомо исправными измерительными приборами и тестерами. Особое внимание нужно обратить на исправность защиты элементов питания , качество изоляции и влажность материалов, применяемых во время ремонта.

Соблюдение техники безопасности и правил пользования инструментом является непременным условием при проведении испытаний. Лучше для этого пригласить специалиста с большим опытом работы с электродвигателями.