Придумайте достоверное событие. Придумайте сами по два достоверных, случайных и невозможных события. Формула полной вероятности и формула Байеса

Придумайте достоверное событие. Придумайте сами по два достоверных, случайных и невозможных события. Формула полной вероятности и формула Байеса

Наблюдаемые нами события (явления) можно подразделить на следую­щие три вида: достоверные, невозможные и случайные.

Достоверным называют событие, которое обязательно произойдет, если будет осуществлена определенная сово­купность условий S. Например, если в сосуде содержится вода при нормальном атмосферном давлении и темпера­туре 20°, то событие «вода в сосуде находится в жидком состоянии» есть достоверное. В этом примере заданные атмосферное давление и температура воды составляют совокупность условий S.

Невозможным называют событие, которое заведомо не произойдет, если будет осуществлена совокупность усло­вий S. Например, событие «вода в сосуде находится в твердом состоянии» заведомо не произойдет, если будет осуществлена совокупность условий предыдущего примера.

Случайным называют событие, которое при осуществле­нии совокупности условий S может либо произойти, либо не произойти. Например, если брошена монета, то она может упасть так, что сверху будет либо герб, либо над­пись. Поэтому событие «при бросании монеты выпал «герб» - случайное. Каждое случайное событие, в частно­сти выпадение «герба», есть следствие действия очень многих случайных причин (в нашем примере: сила, с которой брошена монета, форма монеты и многие другие). Невозможно учесть влияние на результат всех этих при­чин, поскольку число их очень велико и законы их действия неизвестны. Поэтому теория вероятностей не ставит перед собой задачу предсказать, произойдет еди­ничное событие или нет, - она просто не в силах это сделать.

По-иному обстоит дело, если рассматриваются случай­ные события, которые могут многократно наблюдаться при осуществлении одних и тех же условий S, т. е. если речь идет о массовых однородных случайных событиях. Оказывается, что достаточно большое число однородных случайных событий независимо от их конкретной природы подчиняется определенным закономерностям, а именно вероятностным закономерностям. Установлением этих за­кономерностей и занимается теория вероятностей.

Т.о., предметом теории вероятностей является изу­чение вероятностных закономерностей массовых однород­ных случайных событий.

Методы теории вероятностей широко применяются в различных отраслях естествознания и техники. Теория вероятностей служит также для обоснования математической и прикладной статистики.

Виды случайных событий . События называют несовместными , если появле­ние одного из них исключает появление других событий в одном и том же испытании.

Пример. Брошена монета. Появление «герба» исключает по­явление надписи. События «появился герб» и «появилась надпись» - несовместные.

Несколько событий образуют полную группу , если в результате испытания появится хотя бы одно из них. В частности, если события, образующие полную группу, попарно несов­местны, то в результате испытания появится одно и только одно из этих событий. Этот частный случай представляет для нас наибольший интерес, поскольку используется далее.

Пример 2. Приобретены два билета денежно-вещевой лотереи. Обязательно произойдет одно и только одно из следующих событий: «выигрыш выпал на первый билет и не выпал на второй», «выигрыш не выпал на первый билет и выпал на второй», «выигрыш выпал на оба билета», «на оба билета выигрыш не выпал». Эти события обра­зуют полную группу попарно несовместных событий.

Пример 3. Стрелок произвел выстрел по цели. Обязательно прои­зойдет одно, из следующих двух событий: попадание, промах. Эти два несовместных события образуют полную группу.

События называют равновозможными , если есть осно­вания считать, что ни одно из них не является более возможным, чем другое.

Пример 4. Появление «герба» и появление надписи при бросании монеты -равновозможные события. Действительно, предполагается, что монета изготовлена из однородного материала, имеет правильную цилиндрическую форму и наличие чеканки не оказывает влияния на выпадение той или иной стороны монеты.

Соб-я обозн-ся прописными буквами лат.алфавита: А, В, С,.. А 1 , А 2 ..

Противоположными называют 2 единственно возможных соб-я, образующих полную группу. Если одно из двух противопол. событий обозначено через А, то др. обозн-ся А`.

Пример 5. Попадание и промах при выстреле по цели – противопол. соб-я.

5 класс. Введение в вероятность (4 ч.)

(разработка 4х уроков по этой теме)

Учебные цели : - ввести определение случайного, достоверного и невозможного события;

Вести первые представления о решении комбинаторных задач: с помощью дерева вариантов и с помощью правила умножения.

Воспитательная цель: развитие мировоззрения учащихся.

Развивающая цель : развитие пространственного воображения, совершенствование навыка работы с линейкой.

    Достоверные, невозможные и случайные события (2ч.)

    Комбинаторные задачи (2ч.)

Достоверные, невозможные и случайные события.

Первый урок

Оборудование урока: игральный кубик, монета, нарды.

Наша жизнь во многом состоит из случайностей. Существует такая наука «Теория вероятностей». Пользуясь ее языком, можно описать многие явления и ситуации.

Еще первобытный вождь понимал, что у десятка охотников «вероятность» поразить копьем зубра больше, чем у одного. Поэтому и охотились тогда коллективно.

Такие древние полководцы, как Александр Македонский или Дмитрий Донской, готовясь к сражению, уповали не только на доблесть и искусство воинов, но и на случай.

Математику многие любят за вечные истины дважды два всегда четыре, сумма четных чисел четна, площадь прямоугольника равна произведению его смежных сторон и т. д. В любой задаче, которую вы решали, у всех получается один и тот же ответ – нужно только не делать ошибок в решении.

Реальная жизнь не так проста и однозначна. Исходы многих явлений заранее предсказать невозможно. Нельзя, например, сказать наверняка, какой стороной упадет подброшенная вверх монета, когда в следующем году выпадет первый снег или сколько человек в городе в течение ближайшего часа захотят позвонить по телефону. Такие непредсказуемые явления называются случайными .

Однако случай тоже имеет свои законы, которые начинают проявляться при многократном повторении случайных явлений. Если подбросить монету 1000 раз, то «орел» выпадет приблизительно в половине случаев, чего нельзя сказать о двух или даже десяти бросаниях. «Приблизительно» не означает половину. Это, как правило, может быть так, а может и не быть. Закон вообще ничего не утверждает наверняка, но дает определенную степень уверенности в том, что некоторое случайное событие произойдет. Такие закономерности изучает специальный раздел математики – Теория вероятностей . С ее помощью можно с большей степенью уверенности (но все равно не наверняка) предсказать и дату выпадения первого снега, и количество телефонных звонков.

Теория вероятностей неразрывно связана с нашей повседневной жизнью. Это дает нам замечательную возможность установить многие вероятностные законы опытным путем, многократно повторяя случайные эксперименты. Материалами для этих экспериментов чаще всего будут обыкновенная монета, игральный кубик, набор домино, нарды, рулетка или даже колода карт. Каждый из этих предметов так или иначе связан с играми. Дело в том, что случай здесь предстает в наиболее частом виде. И первые вероятностные задачи были связаны с оценкой шансов игроков на выигрыш.

Современная теория вероятностей ушла от азартных игр, но их реквизит по-прежнему остается наиболее простым и надежным источником случая. Поупражнявшись с рулеткой и кубиком, вы научитесь вычислять вероятность случайных событий в реальных жизненных ситуациях, что позволит вам оценивать свои шансы на успех, проверять гипотезы, принимать оптимальные решения не только в играх и лотереях.

Решая вероятностные задачи, будьте очень внимательны, старайтесь обосновывать каждый свой шаг, ибо никакая другая область математики не содержит такое количество парадоксов. Как теория вероятностей. И пожалуй главное объяснение этому - ее связь с реальным миром, в котором мы живем.

Во многих играх используют кубик, у которого на каждой грани отмечено различное количество точек от 1 до 6. Играющий бросает кубик, смотрит, сколько точек выпало (на той грани, которая располагается сверху), и делает соответствующее число ходов:1,2,3,4,5, или 6. Бросание кубика можно считать опытом, экспериментом, испытанием, а полученный результат – событием. Людям обычно очень интересно угадывать наступление того или иного события, предсказывать его исход. Какие предсказания они могут сделать, когда бросают игральный кубик? Первое предсказание: выпадет одна из цифр 1,2,3,4,5, или 6.Как вы думаете, предсказанное событие наступит или нет? Конечно, обязательно наступит. Событие, которое в данном опыте обязательно наступит, называют достоверным событием.

Второе предсказание : выпадет цифра 7. Как вы думаете, предсказанное событие наступит или нет? Конечно не наступит, это просто невозможно. Событие, которое в данном опыте наступить не может, называют невозможным событием.

Третье предсказание : выпадет цифра 1. Как вы думаете, предсказанное событие наступи или нет? На этот вопрос мы с полной уверенностью ответить не в состоянии, поскольку предсказанное событие может наступить, а может и не наступить. Событие, которое в данном опыте может наступить, а может и не наступить, называют случайным событием.

Задание : охарактеризуйте события, о которых идет речь в приведенных ниже заданиях. Как достоверные, невозможные или случайные.

    Подбрасываем монету. Появился герб. (случайное)

    Охотник стрелял в волка и попал. (случайное)

    Школьник каждый вечер выходит на прогулку. Во время прогулки, в понедельник, он встретил трех знакомых. (случайное)

    Проведем мысленно следующий эксперимент: стакан с водой перевернем вверх дном. Если этот эксперимент проводить не в космосе, а дома или в классе, то вода выльется. (достоверное)

    Произведено три выстрела по мишени». Произошло пять попаданий» (невозможное)

    Бросаем камень вверх. Камень остается висеть в воздухе. (невозможное)

    Буквы слова «антагонизм» наугад переставляем. Получится слово «анахроизм». (невозможное)

959. Петя задумал натуральное число. Событие состоит в следующем:

а) задумано четное число; (случайное) б) задумано нечетное число; (случайное)

в) задумано число, не являющееся ни четным, ни нечетным; (невозможное)

г) задумано число, являющееся четным или нечетным. (достоверное)

961. Петя и толя сравнивают свои дни рождения. Событие состоит в следующем:

а) их дни рождения не совпадают; (случайное) б) их дни рождения совпадают; (случайное)

г) дни рождения обоих приходятся на праздники – Новый год(1 января) и День независимости России(12 июня). (случайное)

962. При игре в нарды используют два игральных кубика. Число ходов, которые делает участник игры, определяется сложением цифр на двух выпавших гранях кубика, а если выпадает «дубль» (1+1,2 + 2,3 + 3,4 + 4,5 + 5,6 + 6),то число ходов удваивается. Вы бросаете кубики и вычисляете, сколько ходов вам предстоит сделать. Событие состоит в следующем:

а) вы должны сделать один ход; б) вы должны сделать 7 ходов;

в) вы должны сделать 24 хода; г) вы должны сделать 13 ходов.

а) – невозможное (1 ход можно сделать, если выпадет комбинация 1 + 0, но числа 0 на кубиках нет).

б) – случайное (если выпадет 1 + 6 или 2 + 5).

в) – случайное (если выпадет комбинация 6 +6).

г) – невозможное (не существует комбинаций чисел от 1 до 6, сумма которых равна 13; это число не может получиться и при выпадении «дубля», т.к. оно нечетное).

Проверь себя. (математический диктант)

1)Укажите, какие из следующих событий невозможные, какие – достоверные, какие – случайные:

    Футбольный матч «Спартак» - «Динамо» закончится вничью. (случайное)

    Вы выиграете, участвуя в беспроигрышной лотерее (достоверное)

    В полночь выпадет снег, а через 24 часа будет светить солнце. (невозможное)

    Завтра будет контрольная по математике. (случайное)

    Вас изберут президентом США. (невозможное)

    Вас изберут президентом России. (случайное)

2)Вы купили в магазине телевизор, на который фирма – производитель дает два года гарантии. Какие из следующих событий невозможные, какие – случайные, какие – достоверные:

    Телевизор не сломается в течение года. (случайное)

    Телевизор не сломается в течение двух лет. (случайное)

    В течение двух лет вам не придется платить за ремонт телевизора. (достоверное)

    Телевизор сломается на третий год. (случайное)

3)Автобусу, в котором едет 15 пассажиров, предстоит сделать 10 остановок. Какие из следующих событий невозможные, какие – случайные, какие – достоверные:

    Все пассажиры выйдут из автобуса на разных остановках. (невозможное)

    Все пассажиры выйдут на одной остановке. (случайное)

    На каждой остановке хоть кто- то выйдет. (случайное)

    Найдется остановка, на которой никто не выйдет. (случайное)

    На всех остановках выйдет четное число пассажиров. (невозможное)

    На всех остановках выйдет нечетное число пассажиров. (невозможное)

Домашнее задание : п. 53 №960, 963, 965 (придумайте сами по два достоверных, случайных и невозможных события).

Второй урок.

    Проверка домашнего задания. (устно)

а) Объясните, что такое достоверное, случайное и невозможное события.

б) Укажите, какое из следующих событий достоверное, какое – невозможное, какое –случайное:

    Летних каникул не будет. (невозможное)

    Бутерброд упадет маслом вниз. (случайное)

    Учебный год когда – нибудь закончится. (достоверное)

    Меня завтра спросят на уроке. (случайное)

    Мне сегодня встретится черная кошка. (случайное)

960. Вы открыли этот учебник на любой странице и выбрали первое попавшееся существительное. Событие состоит в следующем:

а) в написании выбранного слова есть гласная буква. ((достоверное)

б) в написании выбранного слова есть буква «о». (случайное)

в) в написании выбранного слова нет гласных букв. (невозможное)

г) в написании выбранного слова есть мягкий знак. (случайное)

963. Вы снова играете в нарды. Охарактеризуйте следующее событие:

а) игрок должен сделать не более двух ходов. (невозможное – при комбинации наименьших чисел 1 + 1 игрок делает 4 хода; комбинация 1 + 2 дает 3 хода; все остальные комбинации дают более 3 ходов)

б) игрок должен сделать более двух ходов. (достоверное – любая комбинация дает 3 или более ходов)

в) игрок должен сделать не более 24 ходов. (достоверное – комбинация наибольших чисел 6 + 6 дает 24 хода, а все остальные – менее 24 ходов)

г) игрок должен сделать двузначное число ходов. (случайное –например, комбинация 2 + 3 дает однозначное число ходов: 5, а выпадение двух четверок – двузначное число ходов)

2. Решение задач.

964. В мешке лежит 10 шаров: 3 синих, 3 белых и 4 красных. Охарактеризуйте следующее событие:

а) из мешка вынули 4 шара, и все они синие; (невозможное)

б) из мешка вынули 4 шара, и все они красные; (случайное)

в) из мешка вынули 4 шара, и все они оказались разного цвета; (невозможное)

г) из мешка вынули 4 шара, и среди них не оказалось шара черного цвета. (достоверное)

Задача 1 . В коробке лежит 10 красных, 1 зеленая и 2 синих ручки. Из коробки наугад вынимают два предмета. Какие из следующих событий невозможные, какие – случайные, какие –достоверные:

а) вынуты две красные ручки (случайное)

б) вынуты две зеленые ручки; (невозможное)

в) вынуты две синие ручки; (случайное)

г) вынуты ручки двух разных цветов; (случайное)

д) вынуты две ручки; (достоверное)

е) вынуты два карандаша. (невозможное)

Задача 2. Винни –Пух, Пятачок и все – все –все садятся за круглый стол праздновать день рождения. При каком количестве всех – всех –всех событие «Винни Пух и Пятачок будут сидеть рядом»является достоверным, а при каком – случайным?

(если всех – всех –всех всего 1, то событие достоверное, если больше 1, то – случайное).

Задача 3. Среди 100 билетов благотворительной лотереи 20 выигрышных Сколько билетов вам надо купить, чтобы событие «вы ничего не выиграете» было невозможным?

Задача 4. В классе учится 10 мальчиков и 20 девочек. Какие из следующих событий являются для такого класса невозможными, какие –случайными, какие – достоверными

    В классе есть два человека, родившиеся в разные месяцы. (случайное)

    В классе есть два человека, родившиеся в одном месяце. (достоверное)

    В классе есть два мальчика, родившихся в одном месяце. (случайное)

    В классе есть две девочки, родившиеся в одном месяце. (достоверное)

    Все мальчики родились в разные месяцы. (достоверное)

    Все девочки родились в разные месяцы. (случайное)

    Есть мальчик и девочка, родившиеся в одном месяце. (случайное)

    Есть мальчик и девочка, родившиеся в разные месяцы. (случайное)

Задача 5. В коробке 3 красных, 3 желтых, 3 зеленых шара. Вытаскиваем наугад 4 шара. Рассмотрим событие «Среди вынутых шаров окажутся шары ровно М цветов». Для каждого М от 1 до 4 определите, какое это событие – невозможное, достоверное или случайное, и заполните таблицу:

Самостоятельная работа.

I вариант

а) число дня рождения вашего друга меньше 32;

в) завтра будет контрольная по математике;

г) В следующем году первый снег в Москве выпадет в воскресенье.

    Бросают игральный кубик. Охарактеризуйте событие:

а) кубик, упав, встанет на ребро;

б) выпадет одно из чисел: 1, 2, 3, 4, 5, 6;

в) выпадет число 6;

г) выпадет число, кратное 7.

    В коробке лежат 3 красных, 3 желтых и 3 зеленых шара. Охарактеризуйте событие:

а) все вынутые шары одного цвета;

б) все вынутые шары разных цветов;

в) среди вынутых шаров есть шары разных цветов;

с) среди вынутых шаров есть красный, желтый и зеленый шар.

II вариант

    Охарактеризуйте событие, о котором идет речь, как достоверное, невозможное или случайное:

а) свалившийся со стола бутерброд упадет на пол маслом вниз;

б) в Москве в полночь выпадет снег, а через 24 ч. Будет светить солнце;

в) вы выиграете, участвуя в беспроигрышной лотерее;

г) в следующем году в мае раздастся весенний первый гром.

    На карточках записаны все двузначные числа. Наугад выбирают одну карточку. Охарактеризуйте событие:

а) на карточке оказался нуль;

б) на карточке оказалось число, кратное 5;

в) на карточке оказалось число, кратное 100;

г) на карточке оказалось число, большее 9 и меньшее 100.

    В коробке лежат 10 красных, 1 зеленая и 2 синих ручки. Из коробки наугад вынимают два предмета. Охарактеризуйте событие:

а) вынуты две синие ручки;

б) вынуты две красные ручки;

в) вынуты две зеленые ручки;

г) вынуты зеленая и черная ручки.

Домашнее задание: 1). Придумать по два достоверных, случайных и невозможных события.

2). Задача . В коробке 3 красных, 3 желтых, 3 зеленых шара. Вытаскиваем наугад N шаров. Рассмотрим событие «среди вынутых шаров окажутся шары ровно трех цветов». Для каждого N от 1 до 9 определите, какое это событие – невозможное, достоверное или случайное, и заполните таблицу:

Комбинаторные задачи.

Первый урок

    Проверка домашнего задания. (устно)

а) проверяем задачи, которые придумали учащиеся.

б)дополнительную задачу.

    Читаю отрывок из книги В. Левшина «Три дня в Карликании».

«Сначала под звуки плавного вальса числа образовали группу: 1+ 3 + 4 + 2 = 10. Потом юные фигуристы стали меняться местами, образуя все новые и новые группы: 2 + 3 + 4 + 1 = 10

3 + 1 + 2 + 4 = 10

4 + 1 + 3 + 2 = 10

1 + 4 + 2 + 3 = 10 и т. д.

Так продолжалось до тех пор, пока конькобежцы не вернулись к исходному положению».

Сколько раз они поменялись местами?

Сегодня на уроке мы с вами научимся решать такие задачи. Они называются комбинаторными.

3. Изучение нового материала.

Задача 1. Сколько двузначных чисел можно составить из цифр 1, 2, 3?

Решение: 11, 12, 13

31, 32, 33. Всего 9 чисел.

При решении этой задачи мы осуществили перебор всех возможных вариантов, или, как обычно говорят в этих случаях. Всех возможных комбинаций. Поэтому подобные задачи называют комбинаторными. Просчитывать возможные (или невозможные) варианты в жизни приходится довольно часто, поэтому полезно познакомиться с комбинаторными задачами.

967. Несколько стран решили использовать для своего государственного флага символику в виде трех горизонтальных полос одинаковой ширины разных цветов – белого, синего, красного. Сколько стран могут использовать такую символику при условии, что у каждой страны – свой флаг?

Решение. Предположим, что первая полоса – белая. Тогда вторая полоса может быть синей или красной, а третья полоса соответственно, красной или синей. Получилось два варианта: белая, синяя, красная или белая, красная, синяя.

Пусть теперь первая полоса синего цвета, тогда опять получим два варианта: белая, красная, синяя или синяя, красная, белая.

Пусть первая полоса красного цвета, тогда еще два варианта: красная, белая, синяя или красная, синяя, белая.

Всего получилось 6 возможных вариантов. Такой флаг могут использовать 6 стран.

Итак, при решении этой задачи мы искали способ перебора возможных вариантов. Во многих случаях оказывается полезным прием построения картинки – схемы перебора вариантов. Это, во – первых, наглядно, во- вторых, позволяет нам все учесть, ничего не пропустить.

Эту схему еще называют деревом возможных вариантов.

Первая полоса

Вторая полоса

Третья полоса

Полученная комбинация

968. Сколько двузначных чисел можно составить из цифр 1, 2, 4, 6, 8?

Решение. У интересующих нас двузначных чисел на первом месте может находиться любая из заданных цифр, кроме 0. Если на первое место мы поставим цифру 2, то на втором месте может находиться любая из заданных цифр. Получится пять двузначных чисел: 2.,22, 24, 26, 28. Точно так же будет пять двузначных чисел с первой цифрой 4, пять двузначных чисел с первой цифрой 6 и пять двузначных чисел с первой цифрой 8.

Ответ: всего получится 20 чисел.

Построим дерево возможных вариантов для решения этой задачи.

Двузначные числа

Первая цифра

Вторая цифра

Полученные числа

20, 22, 24, 26, 28, 60, 62, 64, 66, 68,

40, 42, 44, 46, 48, 80, 82, 84, 86, 88.

С помощью построения дерева возможных вариантов решите следующие задачи.

971. Руководство некоторой страны решило сделать свой государственный флаг таким: на одноцветном прямоугольном фоне в одном из углов помещается круг другого цвета. Цвета решено выбрать из трех возможных: красный, желтый, зеленый. Сколько вариантов такого флага

существует? На рисунке представлены некоторые из возможных вариантов.

Ответ: 24 варианта.

973. а) Сколько трехзначных чисел можно составить из цифр 1,3, 5,? (27 чисел)

б) Сколько трехзначных чисел можно составить из цифр 1,3, 5 при условии, что цифры не должны повторяться? (6 чисел)

979. Современные пятиборцы в течение двух дней участвуют в соревновании по пяти видам спорта: конкур, фехтование, плавание, стрельба, бег.

а) Сколько существует вариантов порядка прохождения видов соревнования? (120 вариантов)

б) Сколько существует вариантов порядка прохождения видов соревнования, если известно, что последним видом должен быть бег? (24 варианта)

в) Сколько существует вариантов порядка прохождения видов соревнования, если известно, что последним видом должен быть бег, а первым – конкур? (6 вариантов)

981. В двух урнах имеется по пять шаров в каждой пяти различных цветов: белого, синего, красного, желтого, зеленого. Из каждой урны одновременно вынимается по одному шару.

а) сколько всего существует различных комбинаций вынутых шаров (комбинации типа «белый – красный» и «красный – белый» считаются одинаковыми)?

(15 комбинаций)

б) Сколько существует комбинаций, при которых вынутые шары одного цвета?

(5 комбинаций)

в) сколько существует комбинаций, при которых вынутые шары разных цветов?

(15 – 5 = 10 комбинаций)

Домашнее задание: п. 54, № 969, 972 , придумать самим комбинаторную задачу.

969. Несколько стран решили использовать для своего государственного флага символику в виде трех вертикальных полос одинаковой ширины разных цветов: зеленого, черного, желтого. Сколько стран могут использовать такую символику при условии, что у каждой страны – свой флаг?

972. а) Сколько двузначных чисел можно составить из цифр 1, 3, 5, 7, 9?

б) Сколько двузначных чисел можно составить из цифр 1, 3, 5, 7, 9 при условии, что цифры не должны повторяться?

Второй урок

    Проверка домашнего задания. а) № 969 и № 972а) и № 972б) – на доске построить дерево возможных вариантов.

б) устно проверяем составленные задачи.

    Решение задач .

Итак, до этого мы с вами научились решать комбинаторные задачи с помощью дерева вариантов. Это хороший способ? Наверное, да, но очень громоздкий. Давайте попробуем домашнюю задачу № 972 решить по -другому. Кто догадается, как это можно сделать?

Ответ: на каждый из пяти цветов футболок приходится 4 цвета трусов. Всего: 4 * 5 = 20 вариантов.

980. В урнах имеется по пять шаров в каждой пяти различных цветов: белого, синего, красного, желтого, зеленого. Из каждой урны одновременно вынимается по одному шару. Охарактеризуйте указанное ниже событие как достоверное, случайное или невозможное:

а) вынутые шары разного цвета; (случайное)

б) вынутые шары одного цвета; (случайное)

в) вынуты черный и белый шары; (невозможное)

г) вынуты два шара, причем оба оказались окрашены в один из следующих цветов: белый, синий, красный, желтый, зеленый. (достоверное)

982. Группа туристов планирует осуществить поход по маршруту Антоново – Борисово – Власово – Грибово. Из Антоново в Борисово можно сплавиться по реке или дойти пешком. Из Борисово во Власово можно пройти пешком или доехать на велосипедах. Из Власово в Грибово можно доплыть по реке, доехать на велосипедах или пройти пешком. Сколько вариантов похода могут выбрать туристы? Сколько вариантов похода могут выбрать туристы при условии, что хотя бы на одном из участков маршрута они должны использовать велосипеды?

(12 вариантов маршрута, из них 8 – с использованием велосипедов)

Самостоятельная работа.

1 вариант

    а) Сколько трехзначных чисел можно составить из цифр: 0, 1, 3, 5, 7?

б) Сколько трехзначных чисел можно составить из цифр: 0, 1, 3, 5, 7, при условии, что цифры не должны повторяться?

    У Атоса, Портоса и Арамиса есть только шпага, кинжал и пистолет.

а) Сколькими способами можно вооружить мушкетеров?

б) Сколько существует вариантов вооружения, если шпагой должен владеть Арамис?

в) Сколько существует вариантов вооружения, если шпагой должен владеть Арамис, а пистолетом – Портос?

    Вороне где – то бог послал кусочек сыра, а также брынзы, колбасы, белого и черного хлеба. На ель ворона взгромоздясь, позавтракать совсем уж собралась, да призадумалась: сколькими способами можно составить бутерброды из этих продуктов?

2 вариант

    а) Сколько трехзначных чисел можно составить из цифр: 0, 2, 4, 6, 8?

б) Сколько трехзначных чисел можно составить из цифр: 0, 2, 4, 6, 8 при условии, что цифры не должны повторяться?

    Граф Монте – Кристо решил подарить принцессе Гайдэ серьги, ожерелье и браслет. Каждое украшение должно содержать драгоценные камни одного из видов: алмазы, рубины или гранаты.

а) Сколько существует вариантов сочетания украшений из драгоценных камней?

б) Сколько существует вариантов украшений, если серьги должны быть алмазными?

в) Сколько существует вариантов украшений, если серьги должны быть алмазными, а браслет гранатовым?

    На завтрак можно выбрать плюшку, бутерброд или пряник с кофе или кефиром. Сколько вариантов завтрака можно составить?

Домашнее задание : № 974, 975. (составлением дерева вариантов и с помощью правила умножения)

974 . а) Сколько трехзначных чисел можно составить из цифр 0, 2, 4?

б) Сколько трехзначных чисел можно составить из цифр 0, 2, 4 при условии, что цифры не должны повторяться?

975 . а) Сколько трехзначных чисел можно составить из цифр 1,3, 5,7?

б) Сколько трехзначных чисел можно составить из цифр 1,3, 5,7 при условии. Что цифры не должны повторяться?

Номера задач взяты из учебника

«Математика-5», И.И. Зубарева, А.Г. Мордкович, 2004 год.

Теория вероятности, как и любой раздел математики, оперирует определённым кругом понятий. Большинству понятий теории вероятностей даются определение, но некоторые принимаются за первичные, не определяемые, как в геометрии точка, прямая, плоскость. Первичным понятием теории вероятностей является событие. Под событием понимают то, относительно чего после некоторого момента времени можно сказать одно и только одно из двух:

  • · Да, оно произошло.
  • · Нет, оно не произошло.

Например, у меня есть лотерейный билет. После опубликования результатов розыгрыша лотереи интересующее меня событие - выигрыш тысячи рублей либо происходит, либо не происходит. Любое событие происходит вследствие испытания (или опыта). Под испытанием (или опытом) понимают те условия, в результате которых происходит событие. Например, подбрасывание монеты - испытание, а появление на ней «герба» - событие. Событие принято обозначать заглавными латинскими буквами: A,B,C,… . События в материальном мире можно разбить на три категории - достоверные, невозможные и случайные.

Достоверное событие - это такое событие, о котором заранее известно, что оно произойдёт. Его обозначают буквой W. Так, достоверным является выпадение не более шести очков при бросании обычной игральной кости, появление белого шара при извлечении из урны, содержащей только белые шары, и т.п.

Невозможное событие - это событие, о котором заранее известно, что оно не произойдёт. Его обозначают буквой E. Примерами невозможных событий являются извлечение более четырёх тузов из обычной карточной колоды, появление красного шара из урны, содержащей лишь белые и чёрные шары, и т.п.

Случайное событие - это событие, которое может произойти или не произойти в результате испытания. События А и В называют несовместными, если наступление одного из них исключает возможность наступления другого. Так появление любого возможного числа очков при бросании игральной кости (событие А) несовместно с появлением иного числа (событие В). Выпадение чётного числа очков несовместно с выпадением нечётного числа. Наоборот, выпадение чётного очков (событие А) и числа очков, кратного трём (событие В),не будут несовместными, ибо выпадение шести очков означает наступление и события А, и события В, так что наступление одного из них не исключает наступление другого. С событиями можно совершать операции. Объединением двух событий С=АUВ называется событие С, которое происходит тогда и только тогда, когда происходит хотя бы одно из этих событий А и В. Пересечением двух событий D=A?? В называется событие, которое происходит тогда и только тогда, когда происходят события и А и В.

Тема урока: «Случайные, достоверные и невозможные события»

Место урока в учебном плане: «Комбинаторика. Случайные события» урок 5/8

Тип урока: Урок формирования новых знаний

Цели урока:

Образовательные:

o ввести определение случайного, достоверного и невозможного события;

o научить в процессе реальной ситуации определять термины теории вероятностей: достоверные, невозможные, равновероятностные события;

Развивающие:

o способствовать развитию логического мышления,

o познавательного интереса учащихся,

o умения сравнивать и анализировать,

Воспитательные:

o воспитание интереса к изучению математики,

o развитие мировоззрения учащихся.

o владение интеллектуальными умениями и мыслительными операциями;

Методы обучения: объяснительно-иллюстративный, репродуктивный, математический диктант.

УМК: Математика: учебник для 6 кл. под редакцией, и др., изд-во «Просвещение», 2008 г., Математика, 5-6: кн. для учителя / [, [ , ]. - М. : Просвещение, 2006.

Дидактический материал: плакаты на доску.

Литература:

1. Математика: учеб. для 6 кл. общеобразоват. учреждений/ , и др.]; под ред. , ; Рос. акад. наук, Рос. акад. образования, изд-во «Просвещение». - 10-е изд. - М. : Просвещение, 2008.-302 с.: ил. - (Академический школь­ный учебник).

2. Математика, 5-б: кн. для учителя / [, ]. - М. : Просвещение, 2006. - 191 с. : ил.

4. Решение задач по статистике, комбинаторике и теории вероятностей. 7-9 классы. / авт.- сост. . Изд. 2-е, испр. - Волгоград: Учитель, 2006. -428 с.

5. Уроки математики с применением информационных технологий . 5-10 классы. Методическое - пособие с электронным приложением / и др. 2-е изд., стереотип. - М.: Издательство «Глобус», 2010. - 266 с. (Coвременная школа).

6. Преподавание математики в современной школе. Методические рекомендации. Владивосток: Издательство ПИППКРО, 2003.

ПЛАН УРОКА

I. Организационный момент.

II. Устная работа.

III. Изучение нового материала.

IV. Формирование умений и навыков.

V. Итоги урока.

V. Домашнее задание.

ХОД УРОКА

1. Оргмомент

2. Актуализация знаний

15*(-100)

Устная работа:

3. Объяснение нового материала

Учитель: Наша жизнь во многом состоит из случайностей. Существует такая наука «Теория вероятностей». Пользуясь ее языком, можно описать многие явления и ситуации.

Такие древние полководцы, как Александр Македонский или Дмитрий Донской, готовясь к сражению, уповали не только на доблесть и искусство воинов, но и на случай.

Математику многие любят за вечные истины дважды два всегда четыре, сумма четных чисел четна, площадь прямоугольника равна произведению его смежных сторон и т. д. В любой задачах, которые вы решали, у всех получается один и тот же ответ – нужно только не делать ошибок в решении.

Реальная жизнь не так проста и однозначна. Исходы многих явлений заранее предсказать невозможно. Нельзя, например, сказать наверняка, какой стороной упадет подброшенная вверх монета, когда в следующем году выпадет первый снег или сколько человек в городе в течение ближайшего часа захотят позвонить по телефону. Такие непредсказуемые явления называются случайными .

Однако случай тоже имеет свои законы, которые начинают проявляться при многократном повторении случайных явлений. Если подбросить монету 1000 раз, то «орел» выпадет приблизительно в половине случаев, чего нельзя сказать о двух или даже десяти бросаниях. «Приблизительно» не означает половину. Это, как правило, может быть так, а может и не быть. Закон вообще ничего не утверждает наверняка, но дает определенную степень уверенности в том, что некоторое случайное событие произойдет.

Такие закономерности изучает специальный раздел математики – Теория вероятностей . С ее помощью можно с большей степенью уверенности (но все равно не наверняка) предсказать и дату выпадения первого снега, и количество телефонных звонков.

Теория вероятностей неразрывно связана с нашей повседневной жизнью. Это дает нам замечательную возможность установить многие вероятностные законы опытным путем, многократно повторяя случайные эксперименты. Материалами для этих экспериментов чаще всего будут обыкновенная монета, игральный кубик, набор домино, нарды, рулетка или даже колода карт. Каждый из этих предметов, так или иначе, связан с играми. Дело в том, что случай здесь предстает в наиболее частом виде. И первые вероятностные задачи были связаны с оценкой шансов игроков на выигрыш.

Современная теория вероятностей ушла от азартных игр, но их реквизит по-прежнему остается наиболее простым и надежным источником случая. Поупражнявшись с рулеткой и кубиком, вы научитесь вычислять вероятность случайных событий в реальных жизненных ситуациях, что позволит вам оценивать свои шансы на успех, проверять гипотезы, принимать оптимальные решения не только в играх и лотереях.

Решая вероятностные задачи, будьте очень внимательны, старайтесь обосновывать каждый свой шаг, ибо никакая другая область математики не содержит такое количество парадоксов. Как теория вероятностей. И, пожалуй, главное объяснение этому - ее связь с реальным миром, в котором мы живем.

Во многих играх используют кубик, у которого на каждой грани отмечено различное количество точек от 1 до 6. Играющий бросает кубик, смотрит, сколько точек выпало (на той грани, которая располагается сверху), и делает соответствующее число ходов:1,2,3,4,5, или 6. Бросание кубика можно считать опытом, экспериментом, испытанием, а полученный результат – событием. Людям обычно очень интересно угадывать наступление того или иного события, предсказывать его исход. Какие предсказания они могут сделать, когда бросают игральный кубик?

Первое предсказание: выпадет одна из цифр 1,2,3,4,5, или 6.Как вы думаете, предсказанное событие наступит или нет? Конечно, обязательно наступит.

Событие, которое в данном опыте обязательно наступит, называют достоверным событием.

Второе предсказание : выпадет цифра 7. Как вы думаете, предсказанное событие наступит или нет? Конечно не наступит, это просто невозможно.

Событие, которое в данном опыте наступить не может, называют невозможным событием.

Третье предсказание : выпадет цифра 1. Как вы думаете, предсказанное событие наступит или нет? На этот вопрос мы с полной уверенностью ответить не в состоянии, поскольку предсказанное событие может наступить, а может и не наступить.

События, которые в одних и тех же условиях могут произойти, а могут и не произойти, называются случайными .

Пример. В коробке лежат 5 конфет в синей обертке и одна в белой. Не глядя в коробку, наугад вынимают одну конфету. Можно ли сказать заранее, какого она будет цвета?

Задание : охарактеризуйте события, о которых идет речь в приведенных ниже заданиях. Как достоверные, невозможные или случайные.

1. Подбрасываем монету. Появился герб. (случайное)

2. Охотник стрелял в волка и попал. (случайное)

3. Школьник каждый вечер выходит на прогулку. Во время прогулки, в понедельник, он встретил трех знакомых. (случайное)

4. Проведем мысленно следующий эксперимент: стакан с водой перевернем вверх дном. Если этот эксперимент проводить не в космосе, а дома или в классе, то вода выльется. (достоверное)

5. Произведено три выстрела по мишени». Произошло пять попаданий» (невозможное)

6. Бросаем камень вверх. Камень остается висеть в воздухе. (невозможное)

Пример Петя задумал натуральное число. Событие состоит в следующем:

а) задумано четное число; (случайное)

б) задумано нечетное число; (случайное)

в) задумано число, не являющееся ни четным, ни нечетным; (невозможное)

г) задумано число, являющееся четным или нечетным. (достоверное)

События, которые при данных условиях имеют равные шансы, называются равновероятными .

Случайные события, которые имеют равные шансы, называют равновозможными или равновероятными .

Поместить на доску плакат.

На устном экзамене уче­ник берет один из разложенных перед ним билетов. Шансы взять любой из экзаменационных билетов равны. Равновероятным явля­ется выпадение любого числа очков от 1 до 6 при бросании играль­ного кубика, а также «орла» или «решки» при бросании монеты.

Но не все события являются равновозможными . Может не за­звонить будильник, перегореть лампочка, сломаться автобус, но в обычных условиях такие события маловероятны. Более вероятно, что будильник зазвонит, лампочка загорится, автобус поедет.

У одних событий шансов произойти больше, значит, они более вероятны - ближе к достоверным. А у других шансов меньше, они менее вероятны - ближе к невозможным.

У невозможных событий нет никаких шансов произойти, а до­стоверные события имеют все шансы произойти, при определенных условиях они произойдут обязательно.

Пример Петя и Коля сравнивают свои дни рождения. Событие состоит в следующем:

а) их дни рождения не совпадают; (случайное)

б) их дни рождения совпадают; (случайное)

г) дни рождения обоих приходятся на праздники – Новый год (1 января) и День независимости России (12 июня). (случайное)

3.Формирование умений и навыков

Задача из учебника № 000. Какие из перечисленных ниже случайных событий достоверные, воз­можные:

а) черепаха научится говорить;

б) вода в чайнике, стоящем на плите, закипит;

г) вы выиграете, участвуя в лотерее;

д) вы не выиграете, участвуя в беспроигрышной лотерее;

е) вы проиграете партию в шахматы;

ж) вы завтра встретите инопланетянина;

з) на следующей неделе испортится погода; и) вы нажали на звонок, а он не зазвонил; к) сегодня - четверг;

л) после четверга будет пятница; м) после пятницы будет четверг?

В коробках лежат 2 красных, I желтый и 4 зеленых шара. Из коробки наугад вынимают три шара. Какие из следующих событий невозможные, случайные, достоверные:

А: будут вытянуты три зеленых шара;

В: будут вытянуты три красных шара;

С: будут вытянуты шары двух цветов;

D: будут вытянуты шары одного цвета;

Е: среди вытянутых шаров есть синий;

F: среди вытянутых есть шары трех цветов;

G: среди вытянутых есть два желтых шара?

Проверь себя. (математический диктант)

1)Укажите, какие из следующих событий невозможные, какие – достоверные, какие – случайные:

· Футбольный матч «Спартак» - «Динамо» закончится вничью (случайное)

· Вы выиграете, участвуя в беспроигрышной лотерее (достоверное)

· В полночь выпадет снег, а через 24 часа будет светить солнце (невозможное)

· Завтра будет контрольная по математике. (случайное)

· Вас изберут президентом США. (невозможное)

· Вас изберут президентом России. (случайное)

2) Вы купили в магазине телевизор, на который фирма – производитель дает два года гарантии. Какие из следующих событий невозможные, какие – случайные, какие – достоверные:

· Телевизор не сломается в течение года. (случайное)

· Телевизор не сломается в течение двух лет. (случайное)

· В течение двух лет вам не придется платить за ремонт телевизора. (достоверное)

· Телевизор сломается на третий год. (случайное)

3)Автобусу, в котором едет 15 пассажиров, предстоит сделать 10 остановок. Какие из следующих событий невозможные, какие – случайные, какие – достоверные:

· Все пассажиры выйдут из автобуса на разных остановках. (невозможное)

· Все пассажиры выйдут на одной остановке. (случайное)

· На каждой остановке хоть кто - то выйдет. (случайное)

· Найдется остановка, на которой никто не выйдет. (случайное)

· На всех остановках выйдет четное число пассажиров. (невозможное)

· На всех остановках выйдет нечетное число пассажиров. (невозможное)

Итоги урока

Вопросы учащимся:

Какие события называются случайными?

Какие события называются равновероятными?

Какие события называются достоверными? невозможными?

Какие события называются более вероятными? менее вероятными?

Домашнее задание : п. 9.3

№ 000. Придумайте по три примера достоверных, невозможных событий, а также событий, о которых нельзя сказать, что они обязательно произойдут.

902. В коробке лежат 10 красных, 1 зеленая и 2 синие ручки. Из коробки наугад вынимают две ручки. Какие из следующих событий невозможные, достоверные:

А: будут вынуты две красные ручки; В: будут вынуты две зеленые ручки; С: будут вынуты две синие ручки; D: будут вынуты две ручки разных цветов;

Е: будут вынуты два карандаша? 03. Егор и Данила договорились: если стрелка вертушки (рис. 205) остановится на белом поле, то забор будет красить Егор, а если на голубом поле - Данила. У кого из мальчиков больше шансов красить забор?

1.1. Некоторые сведения из комбинаторики

1.1.1. Размещения

Рассмотрим простейшие понятия, связанные с выбором и расположением некоторого множества объектов.
Подсчет числа способов, которыми можно совершить эти действия, часто производится при решении вероятностных задач.
Определение . Размещением из n элементов по k (k n ) называется любое упорядоченное подмножество из k элементов множества, состоящего из n различных элементов.
Пример. Следующие последовательности цифр являются размещениями по 2 элемента из 3 элементов множества {1;2;3}: 12, 13, 23, 21, 31, 32.
Заметим, что размещения отличаются порядком входящих в них элементов и их составом. Размещения 12 и 21 содержат одинаковые цифры, но порядок их расположения различен. Поэтому эти размещения считаются разными.
Число различных размещений из n элементов по k обозначается и вычисляется по формуле:
,
где n ! = 1∙2∙...∙(n - 1)∙ n (читается «n – факториал»).
Число двузначных чисел, которые можно составить из цифр 1, 2, 3 при условии, что ни одна цифра не повторяется равно: .

1.1.2. Перестановки

Определение . Перестановками из n элементов называются такие размещения из n элементов, которые различаются только расположением элементов.
Число перестановок из n элементов P n вычисляется по формуле: P n =n !
Пример. Сколькими способами могут встать в очередь 5 человек? Количество способов равно числу перестановок из 5 элементов, т.е.
P 5 =5!=1∙2∙3∙4∙5=120.
Определение . Если среди n элементов k одинаковых, то перестановка этих n элементов называется перестановкой с повторениями.
Пример. Пусть среди 6 книг 2 одинаковые. Любое расположение всех книг на полке - перестановка с повторениями.
Число различных перестановок с повторениями (из n элементов, среди которых k одинаковых) вычисляется по формуле: .
В нашем примере число способов, которыми можно расставить книги на полке, равно: .

1.1.3. Сочетания

Определение . Сочетаниями из n элементов по k называются такие размещения из n элементов по k , которые одно от другого отличаются хотя бы одним элементом.
Число различных сочетаний из n элементов по k обозначается и вычисляется по формуле: .
По определению 0!=1.
Для сочетаний справедливы следующие свойства:
1.
2.
3.
4.
Пример. Имеются 5 цветков разного цвета. Для букета выбирается 3 цветка. Число различных букетов по 3 цветка из 5 равно: .

1.2. Случайные события

1.2.1. События

Познание действительности в естественных науках происходит в результате испытаний (эксперимента, наблюдений, опыта).
Испытанием или опытом называется осуществление какого-нибудь определенного комплекса условий, который может быть воспроизведен сколь угодно большое число раз.
Случайным называется событие, которое может произойти или не произойти в результате некоторого испытания (опыта).
Таким образом, событие рассматривается как результат испытания.
Пример. Бросание монеты – это испытание. Появление орла при бросании – событие.
Наблюдаемые нами события различаются по степени возможности их появления и по характеру их взаимосвязи.
Событие называется достоверным , если оно обязательно произойдет в результате данного испытания.
Пример. Получение студентом положительной или отрицательной оценки на экзамене есть событие достоверное, если экзамен протекает согласно обычным правилам.
Событие называется невозможным , если оно не может произойти в результате данного испытания.
Пример. Извлечение из урны белого шара, в которой находятся лишь цветные (небелые) шары, есть событие невозможное. Отметим, что при других условиях опыта появления белого шара не исключается; таким образом, это событие невозможно лишь в условиях нашего опыта.
Далее случайные события будем обозначать большими латинскими буквами A,B,C... Достоверное событие обозначим буквой Ω, невозможное – Ø.
Два или несколько событий называются равновозможными в данном испытании, если имеются основания считать, что ни одно из этих событий не является более возможным или менее возможным, чем другие.
Пример. При одном бросании игральной кости появление 1, 2, 3, 4, 5 и 6 очков - все это события равновозможные. Предполагается, конечно, что игральная кость изготовлена из однородного материала и имеет правильную форму.
Два события называются несовместными в данном испытании, если появление одного из них исключает появление другого, и совместными в противном случае.
Пример. В ящике имеются стандартные и нестандартные детали. Берем на удачу одну деталь. Появление стандартной детали исключает появление нестандартной детали. Эти события несовместные.
Несколько событий образуют полную группу событий в данном испытании, если в результате этого испытания обязательно наступит хотя бы одно из них.
Пример. События из примера образуют полную группу равновозможных и попарно несовместных событий.
Два несовместных события, образующих полную группу событий в данном испытании, называютсяпротивоположными событиями .
Если одно из них обозначено через A , то другое принято обозначать через (читается «не A »).
Пример. Попадание и промах при одном выстреле по цели - события противоположные.

1.2.2. Классическое определение вероятности

Вероятность события – численная мера возможности его наступления.
Событие А называется благоприятствующим событию В , если всякий раз, когда наступает событие А , наступает и событие В .
События А 1 , А 2 , ..., А n образуют схему случаев , если они:
1) равновозможны;
2) попарно несовместны;
3) образуют полную группу.
В схеме случаев (и только в этой схеме) имеет место классическое определение вероятности P (A ) события А . Здесь случаем называют каждое из событий, принадлежащих выделенной полной группе равновозможных и попарно несовместных событий.
Если n – число всех случаев в схеме, а m – число случаев, благоприятствующих событию А , то вероятность события А определяется равенством:

Из определения вероятности вытекают следующие ее свойства:
1. Вероятность достоверного события равна единице.
Действительно, если событие достоверно, то каждый случай в схеме случаев благоприятствует событию. В этом случае m = n и, следовательно,

2. Вероятность невозможного события равна нулю.
Действительно, если событие невозможно, то ни один случай из схемы случаев не благоприятствует событию. Поэтому m =0 и, следовательно,

Вероятность случайного события есть положительное число, заключенное между нулем и единицей.
Действительно, случайному событию благоприятствует лишь часть из общего числа случаев в схеме случаев. Поэтому 0<m <n , а, значит, 0<m /n <1 и, следовательно, 0 < P(A) < 1.
Итак, вероятность любого события удовлетворяет неравенствам
0 ≤ P(A) ≤ 1.
В настоящее время свойства вероятности определяются в виде аксиом, сформулированных А.Н. Колмогоровым.
Одним из основных достоинств классического определения вероятности является возможность вычислить вероятность события непосредственно, т.е. не прибегая к опытам, которые заменяют логическими рассуждениями.

Задачи непосредственного вычисления вероятностей

Задача 1.1 . Какова вероятность появления четного числа очков (событие А) при одном бросании игрального кубика?
Решение . Рассмотрим события А i – выпало i очков, i = 1, 2, …,6. Очевидно, что эти события образуют схему случаев. Тогда число всех случаев n = 6. Выпадению четного числа очков благоприятствуют случаи А 2 , А 4 , А 6 , т.е. m = 3. Тогда .
Задача 1.2 . В урне 5 белых и 10 черных шаров. Шары тщательно перемешивают и затем наугад вынимают 1 шар. Какова вероятность того, что вынутый шар окажется белым?
Решение . Всего имеется 15 случаев, которые образуют схему случаев. Причем ожидаемому событию А – появлению белого шара, благоприятствуют 5 из них, поэтому .
Задача 1.3 . Ребенок играет с шестью буквами азбуки: А, А, Е, К, Р, Т. Найти вероятность того, что он сможет сложить случайно слово КАРЕТА (событие А).
Решение . Решение осложняется тем, что среди букв есть одинаковые – две буквы «А». Поэтому число всех возможных случаев в данном испытании равно числу перестановок с повторениями из 6 букв:
.
Эти случаи равновозможны, попарно несовместны и образуют полную группу событий, т.е. образуют схему случаев. Лишь один случай благоприятствует событию А . Поэтому
.
Задача 1.4 . Таня и Ваня договорились встречать Новый год в компании из 10 человек. Они оба очень хотели сидеть рядом. Какова вероятность исполнения их желания, если среди их друзей принято места распределять путем жребия?
Решение . Обозначим через А событие «исполнение желания Тани и Вани». 10 человек могут усесться за стол 10! разными способами. Сколько же из этих n = 10! равновозможных способов благоприятны для Тани и Вани? Таня и Ваня, сидя рядом, могут занять 20 разных позиций. В то же время восьмерка их друзей может сесть за стол 8! разными способами, поэтому m = 20∙8!. Следовательно,
.
Задача 1.5 . Группа из 5 женщин и 20 мужчин выбирает трех делегатов. Считая, что каждый из присутствующих с одинаковой вероятностью может быть выбран, найти вероятность того, что выберут двух женщин и одного мужчину.
Решение . Общее число равновозможных исходов испытания равно числу способов, которыми можно выбрать трех делегатов из 25 человек, т.е. . Подсчитаем теперь число благоприятствующих случаев, т.е. число случаев, при которых имеет место интересующее нас событие. Мужчина-делегат может быть выбран двадцатью способами. При этом остальные два делегата должны быть женщинами, а выбрать двух женщин из пяти можно . Следовательно, . Поэтому
.
Задача 1.6. Четыре шарика случайным образом разбрасываются по четырем лункам, каждый шарик попадает в ту или другую лунку с одинаковой вероятностью и независимо от других (препятствий к попаданию в одну и ту же лунку нескольких шариков нет). Найти вероятность того, что в одной из лунок окажется три шарика, в другой - один, а в двух остальных лунках шариков не будет.
Решение. Общее число случаев n =4 4 . Число способов, которыми можно выбрать одну лунку, где будут три шарика, . Число способов, которыми можно выбрать лунку, где будет один шарик, . Число способов, которыми можно выбрать из четырех шариков три, чтобы положить их в первую лунку, . Общее число благоприятных случаев . Вероятность события:
Задача 1.7. В ящике 10 одинаковых шаров, помеченных номерами 1, 2, …, 10. На удачу извлечены шесть шаров. Найти вероятность того, что среди извлечённых шаров окажутся: а) шар №1; б) шары №1 и №2.
Решение . а) Общее число возможных элементарных исходов испытания равно числу способов, которыми можно извлечь шесть шаров из десяти, т.е.
Найдём число исходов, благоприятствующих интересующему нас событию: среди отобранных шести шаров есть шар №1 и, следовательно, остальные пять шаров имеют другие номера. Число таких исходов, очевидно, равно числу способов, которыми можно отобрать пять шаров из оставшихся девяти, т.е.
Искомая вероятность равна отношению числа исходов, благоприятствующих рассматриваемому событию, к общему числу возможных элементарных исходов:
б) Число исходов, благоприятствующих интересующему нас событию (среди отобранных шаров есть шары №1 и №2, следовательно, четыре шара имеют другие номера), равно числу способов, которыми можно извлечь четыре шаров из оставшихся восьми, т.е. Искомая вероятность

1.2.3. Статистическая вероятность

Статистическое определение вероятности используется в случае, когда исходы опыта не являются равновозможными.
Относительная частота события А определяется равенством:
,
где m – число испытаний, в которых событие А наступило, n – общее число произведенных испытаний.
Я. Бернулли доказал, что при неограниченном увеличении числа опытов относительная частота появления события будет практически сколь угодно мало отличаться от некоторого постоянного числа. Оказалось, что это постоянное число есть вероятность появления события. Поэтому, естественно, относительную частоту появления события при достаточно большом числе испытаний называть статистической вероятностью в отличие от ранее введенной вероятности.
Пример 1.8 . Как приближенно установить число рыб в озере?
Пусть в озере х рыб. Забрасываем сеть и, допустим, находим в ней n рыб. Каждую из них метим и выпускаем обратно. Через несколько дней в такую же погоду и в том же месте забрасываем ту же самую сеть. Допустим, что находим в ней m рыб, среди которых k меченных. Пусть событие А – «пойманная рыба мечена». Тогда по определению относительной частоты .
Но если в озере х рыб и мы в него выпустили n меченых, то .
Так как Р * (А ) » Р (А ), то .

1.2.4. Операции над событиями. Теорема сложения вероятностей

Суммой , или объединением, нескольких событий называется событие, состоящее в наступлении хотя бы одного из этих событий (в одном и том же испытании).
Сумма А 1 + А 2 + … + А n обозначается так:
или .
Пример . Бросаются две игральные кости. Пусть событие А состоит в выпадении 4 очков на 1 кости, а событие В – в выпадении 5 очков на другой кости. События А и В совместны. Поэтому событие А +В состоит в выпадении 4 очков на первой кости, или 5 очков на второй кости, или 4 очков на первой кости и 5 очков на второй одновременно.
Пример. СобытиеА – выигрыш по 1 займу, событие В – выигрыш по 2 займу. Тогда событие А+В – выигрыш хотя бы по одному займу (возможно по двум сразу).
Произведением или пересечением нескольких событий называется событие, состоящее в совместном появлении всех этих событий (в одном и том же испытании).
Произведение В событий А 1 , А 2 , …, А n обозначается так:
.
Пример. События А и В состоят в успешном прохождении I и II туров соответственно при поступлении в институт. Тогда событие А ×В состоит в успешном прохождении обоих туров.
Понятия суммы и произведения событий имеют наглядную геометрическую интерпретацию. Пусть событие А есть попадание точки в область А , а событие В – попадание точки в область В . Тогда событие А+В есть попадание точки в объединение этих областей (рис. 2.1), а событие А В есть попадание точки в пересечение этих областей (рис. 2.2).

Рис. 2.1 Рис. 2.2
Теорема . Если события A i (i = 1, 2, …, n ) попарно несовместны, то вероятность суммы событий равна сумме вероятностей этих событий:
.
Пусть А и Ā – противоположные события, т.е. А + Ā = Ω, где Ω – достоверное событие. Из теоремы сложения вытекает, что
Р(Ω) = Р (А ) + Р (Ā ) = 1, поэтому
Р (Ā ) = 1 – Р (А ).
Если события А 1 и А 2 совместны, то вероятность суммы двух совместных событий равна:
Р (А 1 + А 2) = Р (А 1) + Р (А 2) – Р(А 1 ×А 2).
Теоремы сложения вероятностей позволяют перейти от непосредственного подсчета вероятностей к определению вероятностей наступления сложных событий.
Задача 1.8 . Стрелок производит один выстрел по мишени. Вероятность выбить 10 очков (событие А ), 9 очков (событие В ) и 8 очков (событие С ) равны соответственно 0,11; 0,23; 0,17. Найти вероятность того, что при одном выстреле стрелок выбьет менее 8 очков (событие D ).
Решение . Перейдем к противоположному событию – при одном выстреле стрелок выбьет не менее 8 очков. Событие наступает, если произойдет А или В , или С , т.е. . Так как события А, В , С попарно несовместны, то, по теореме сложения,
, откуда .
Задача 1.9 . От коллектива бригады, которая состоит из 6 мужчин и 4 женщин, на профсоюзную конференцию выбирается два человека. Какова вероятность, что среди выбранных хотя бы одна женщина (событие А ).
Решение . Если произойдет событие А , то обязательно произойдет одно из следующих несовместных событий: В – «выбраны мужчина и женщина»; С – «выбраны две женщины». Поэтому можно записать: А=В+С . Найдем вероятность событий В и С . Два человека из 10 можно выбрать способами. Двух женщин из 4 можно выбрать способами. Мужчину и женщину можно выбрать 6 ×4 способами. Тогда . Так как события В и С несовместны, то, по теореме сложения,
Р(А) = Р(В + С) = Р(В) + Р(С ) = 8/15 + 2/15 = 2/3.
Задача 1.10. На стеллаже в библиотеке в случайном порядке расставлено 15 учебников, причем пять из них в переплете. Библиотекарь берет наудачу три учебника. Найти вероятность того, что хотя бы один из взятых учебников окажется в переплете (событие А ).
Решение . Первый способ. Требование – хотя бы один из трех взятых учебников в переплете – будет осуществлено, если произойдет любое из следующих трех несовместных событий: В – один учебник в переплете, С – два учебника в переплете, D – три учебника в переплете.
Интересующее нас событие А можно представить в виде суммы событий: A=B+C+D . По теореме сложения,
P(A) = P(B) + P(C) + P(D). (2.1)
Найдем вероятность событий B, C и D (см комбинаторные схемы):

Представив эти вероятности в равенство (2.1), окончательно получим
P(A) = 45/91 + 20/91 + 2/91 = 67/91.
Второй способ. Событие А (хотя бы один из взятых трех учебников имеет переплет) и Ā (ни один из взятых учебников не имеет переплета) – противоположные, поэтому P(A) + P(Ā ) = 1 (сумма вероятностей двух противоположных событий равна 1). Отсюда P(A ) = 1 – P(Ā). Вероятность появления события Ā (ни один из взятых учебников не имеет переплета)
Искомая вероятность
P(A ) = 1 – P(Ā ) = 1 – 24/91 = 67/91.

1.2.5. Условная вероятность. Теорема умножения вероятностей

Условной вероятностью Р(В /А ) называется вероятность события В, вычисленная в предположении, что событие А уже наступило.
Теорема . Вероятность совместного появления двух событий равна произведению вероятностей одного из них на условную вероятность другого, вычисленную в предположении, что первое событие уже наступило:
Р(А В) = Р(А )∙Р(В /А ). (2.2)
Два события называются независимыми, если появление любого из них не изменяет вероятность появления другого, т.е.
Р(А) = Р(А/В ) или Р(В ) = Р(В /А ). (2.3)
Если события А и В независимы, то из формул (2.2) и (2.3) следует
Р(А В) = Р(А )∙Р(В ). (2.4)
Справедливо и обратное утверждение, т.е. если для двух событий выполняется равенство (2.4), то эти события независимы. В самом деле, из формул (2.4) и (2.2) вытекает
Р(А В) = Р(А )∙Р(В ) = Р(А ) ×Р(В /А ), откуда Р(А ) = Р(В /А ).
Формула (2.2) допускает обобщение на случай конечного числа событий А 1 , А 2 ,…,А n :
Р(А 1 ∙А 2 ∙…∙А n )=Р(А 1)∙Р(А 2 /А 1)∙Р(А 3 /А 1 А 2)∙…∙Р(А n /А 1 А 2 …А n -1).
Задача 1.11 . Из урны, в которой 5 белых и 10 черных шаров, вынимают подряд два шара. Найти вероятность того, что оба шара белые (событие А ).
Решение . Рассмотрим события: В – первый вынутый шар белый; С – второй вынутый шар белый. Тогда А = ВС .
Опыт можно провести двумя способами:
1) с возвращением: вынутый шар после фиксации цвета возвращается в урну. В этом случае события В и С независимы:
Р(А) = Р(В )∙Р(С ) = 5/15 ×5/15 = 1/9;
2) без возвращения: вынутый шар откладывается в сторону. В этом случае события В и С зависимы:
Р(А) = Р(В )∙Р(С /В ).
Для события В условия прежние, , а для С ситуация изменилась. Произошло В , следовательно в урне осталось 14 шаров, среди которых 4 белых .
Итак, .
Задача 1.12 . Среди 50 электрических лампочек 3 нестандартные. Найти вероятность того, что две взятые одновременно лампочки нестандартные.
Решение . Рассмотрим события: А – первая лампочка нестандартная, В – вторая лампочка нестандартная, С – обе лампочки нестандартные. Ясно, что С = А В . Событию А благоприятствуют 3 случая из 50 возможных, т.е. Р(А ) = 3/50. Если событие А уже наступило, то событию В благоприятствуют два случая из 49 возможных, т.е. Р(В /А ) = 2/49. Следовательно,
.
Задача 1.13 . Два спортсмена независимо друг от друга стреляют по одной мишени. Вероятность попадания в мишень первого спортсмена равна 0,7, а второго – 0,8. Какова вероятность того, что мишень будет поражена?
Решение . Мишень будет поражена, если в нее попадет либо первый стрелок, либо второй, либо оба вместе, т.е. произойдет событие А+В , где событие А заключается в попадании в мишень первым спортсменом, а событие В – вторым. Тогда
Р(А +В )=Р(А )+Р(В )–Р(А В )=0, 7+0, 8–0, 7∙0,8=0,94.
Задача 1.14. В читальном зале имеется шесть учебников по теории вероятностей, из которых три в переплете. Библиотекарь наудачу взял два учебника. Найти вероятность того, что два учебника окажутся в переплете.
Решение . Введем обозначения событий: A – первый взятый учебник имеет переплет, В – второй учебник имеет переплет. Вероятность того, что первый учебник имеет переплет,
P(A ) = 3/6 = 1/2.
Вероятность того, что второй учебник имеет переплет, при условии, что первый взятый учебник был в переплете, т.е. условная вероятность события В , такова: P(B /А) = 2/5.
Искомая вероятность того, что оба учебника имеют переплет, по теореме умножения вероятностей событий равна
P(AB ) = P(A ) ∙ P(B /А) = 1/2·∙ 2/5 = 0,2.
Задача 1.15. В цехе работают 7 мужчин и 3 женщины. По табельным номерам наудачу отобраны три человека. Найти вероятность того, что все отобранные лица окажутся мужчинами.
Решение . Введем обозначения событий: A – первым отобран мужчина, В – вторым отобран мужчина, С – третьим отобран мужчина. Вероятность того, что первым будет отобран мужчина, P(A ) = 7/10.
Вероятность того, что вторым отобран мужчина, при условии, что первым уже был отобран мужчина, т.е. условная вероятность события В следующая: P(B/А ) = 6/9 = 2/3.
Вероятность того, что третьим будет отобран мужчина, при условии, что уже отобраны двое мужчин, т.е. условная вероятность события С такова: P(C /АВ ) = 5/8.
Искомая вероятность того, что все три отобранных лица окажутся мужчинами, P(ABC) = P(A ) P(B /А ) P(C /АВ ) = 7/10 · 2/3 · 5/8 = 7/24.

1.2.6. Формула полной вероятности и формула Байеса

Пусть B 1 , B 2 ,…, B n – попарно несовместные события (гипотезы) и А – событие, которое может произойти только совместно с одним из них.
Пусть, кроме того, нам известны Р(B i ) и Р(А /B i ) (i = 1, 2, …, n ).
В этих условиях справедливы формулы:
(2.5)
(2.6)
Формула (2.5) называется формулой полной вероятности . По ней вычисляется вероятность события А (полная вероятность).
Формула (2.6) называется формулой Байеса . Она позволяет произвести пересчет вероятностей гипотез, если событие А произошло.
При составлении примеров удобно считать, что гипотезы образуют полную группу.
Задача 1.16 . В корзине яблоки с четырех деревьев одного сорта. С первого – 15% всех яблок, со второго – 35%, с третьего – 20%, с четвертого – 30%. Созревшие яблоки составляют соответственно 99%, 97%, 98%, 95%.
а) Какова вероятность того, что наугад взятое яблоко окажется спелым (событие А ).
б) При условии, что наугад взятое яблоко оказалось спелым, вычислить вероятность того, что оно с первого дерева.
Решение . а) Имеем 4 гипотезы:
B 1 – наугад взятое яблоко снято с 1-го дерева;
B 2 – наугад взятое яблоко снято с 2-го дерева;
B 3 – наугад взятое яблоко снято с 3-го дерева;
B 4 – наугад взятое яблоко снято с 4-го дерева.
Их вероятности по условию: Р(B 1) = 0,15; Р(B 2) = 0,35; Р(B 3) = 0,2; Р(B 4) = 0,3.
Условные вероятности события А :
Р(А /B 1) = 0,99; Р(А /B 2) = 0,97; Р(А /B 3) = 0,98; Р(А /B 4) = 0,95.
Вероятность того, что наудачу взятое яблоко окажется спелым, находится по формуле полной вероятности:
Р(А )=Р(B 1)∙Р(А /B 1)+Р(B 2)∙Р(А /B 2)+Р(B 3)∙Р(А /B 3)+Р(B 4)∙Р(А /B 4)=0,969.
б) Формула Байеса для нашего случая имеет вид:
.
Задача 1.17. В урну, содержащую два шара, опущен белый шар, после чего из нее наудачу извлечен один шар. Найти вероятность того, что извлеченный шар окажется белым, если равновозможны все возможные предположения о первоначальном составе шаров (по цвету).
Решение . Обозначим через А событие – извлечен белый шар. Возможны следующие предположения (гипотезы) о первоначальном составе шаров: B 1 – белых шаров нет, В 2 – один белый шар, В 3 – два белых шара.
Поскольку всего имеется три гипотезы, и сумма вероятностей гипотез равна 1 (так как они образуют полную группу событий), то вероятность каждой из гипотез равна 1/3,т.е.
P(B 1) = P(B 2) = P(B 3) = 1/3.
Условная вероятность того, что будет извлечен белый шар, при условии, что первоначально в урне не было белых шаров, Р(А /B 1)=1/3. Условная вероятность того, что будет извлечен белый шар, при условии, что первоначально в урне был один белый шар, Р(А /B 2)=2/3. Условная вероятность того, что будет извлечен белый шар, при условии, что первоначально в урне было два белых шара Р(А /B 3)=3/ 3=1.
Искомую вероятность того, что будет извлечен белый шар, находим по формуле полной вероятности:
Р (А )=Р(B 1)∙Р(А /B 1)+Р(B 2)∙Р(А /B 2)+Р(B 3)∙Р(А /B 3)=1/3·1/3+1/3·2/3+1/3·1=2/3.
Задача 1.18 . Два автомата производят одинаковые детали, которые поступают на общий конвейер. Производительность первого автомата вдвое больше производительности второго. Первый автомат производит в среднем 60% деталей отличного качества, а второй – 84%. Наудачу взятая с конвейера деталь оказалась отличного качества. Найти вероятность того, что эта деталь произведена первым автоматом.
Решение . Обозначим через А событие – деталь отличного качества. Можно сделать два предположения: B 1 – деталь произведена первым автоматом, причем (поскольку первый автомат производит вдвое больше деталей, чем второй) Р(А /B 1) = 2/3; B 2 – деталь произведена вторым автоматом, причем P(B 2) = 1/3.
Условная вероятность того, что деталь будет отличного качества, если она произведена первым автоматом,Р(А /B 1)=0,6.
Условная вероятность того, что деталь будет отличного качества, если она произведена вторым автоматом,Р(А /B 1)=0,84.
Вероятность того, что наудачу взятая деталь окажется отличного качества, по формуле полной вероятности равна
Р(А )=Р(B 1) ∙Р(А /B 1)+Р(B 2) ∙Р(А /B 2)=2/3·0,6+1/3·0,84 = 0,68.
Искомая вероятность того, что взятая отличная деталь произведена первым автоматом, по формуле Бейеса равна

Задача 1.19 . Имеются три партии деталей по 20 деталей в каждой. Число стандартных деталей в первой, второй и третьей партиях соответственно равны 20, 15, 10. Из выбранной партии наудачу извлечена деталь, оказавшаяся стандартной. Детали возвращают в партию и вторично из этой же партии наудачу извлекают деталь, которая также оказывается стандартной. Найти вероятность того, что детали были извлечены из третьей партии.
Решение . Обозначим через А событие – в каждом из двух испытаний (с возвращением) была извлечена стандартная деталь. Можно сделать три предположения (гипотезы): B 1 – детали извлекаются из первой партии, В 2 – детали извлекаются из второй партии, В 3 – детали извлекаются из третьей партии.
Детали извлекались наудачу из взятой партии, поэтому вероятности гипотез одинаковы:  P(B 1) = P(B 2) = P(B 3) = 1/3.
Найдем условную вероятность Р(А /B 1), т.е. вероятность того, что из первой партии будут последовательно извлечены две стандартные детали. Это событие достоверно, т.к. в первой партии все детали стандартны, поэтому Р(А /B 1) = 1.
Найдем условную вероятность Р(А /B 2), т.е. вероятность того, что из второй партии будут последовательно извлечены (с возвращением) две стандартные детали: Р(А /B 2)= 15/20 ∙ 15/20 = 9/16.
Найдем условную вероятность Р(А /B 3), т.е. вероятность того, что из третьей партии будут последовательно извлечены (с возвращением) две стандартные детали: Р(А /B 3) = 10/20 · 10/20 = 1/4.
Искомая вероятность того, что обе извлеченные стандартные детали взяты из третьей партии, по формуле Бейеса равна

1.2.7. Повторные испытания

Если производится несколько испытаний, причем вероятность события А в каждом испытании не зависит от исходов других испытаний, то такие испытания называют независимыми относительно события А. В разных независимых испытаниях событие А может иметь либо различные вероятности, либо одну и ту же вероятность. Будем далее рассматривать лишь такие независимые испытания, в которых событие А имеет одну ту же вероятность.
Пусть производится п независимых испытаний, в каждом из которых событие А может появиться либо не появиться. Условимся считать, что вероятность события А в каждом испытании одна и та же, а именно равна р. Следовательно, вероятность ненаступления события А в каждом испытании также постоянна и равна 1–р. Такая вероятностная схема называется схемой Бернулли . Поставим перед собой задачу вычислить вероятность того, что при п испытаниях по схеме Бернулли событие А осуществится ровно k раз (k – число успехов) и, следовательно, не осуществится п– раз. Важно подчеркнуть, что не требуется, чтобы событие А повторилось ровно k раз в определенной последовательности. Искомую вероятность обозначим Р п (k ). Например, символ Р 5 (3) означает вероятность того, что в пяти испытаниях событие появится ровно 3 раза и, следовательно, не наступит 2 раза.
Поставленную задачу можно решить с помощью так называемой формулы Бернулли, которая имеет вид:
.
Задача 1.20. Вероятность того, что расход электроэнергии в продолжение одних суток не превысит установленной нормы, равна р =0,75. Найти вероятность того, что в ближайшие 6 суток расход электроэнергии в течение 4 суток не превысит нормы.
Решение. Вероятность нормального расхода электроэнергии в продолжение каждых из 6 суток постоянна и равнар =0,75. Следовательно, вероятность перерасхода электроэнергии в каждые сутки также постоянна и равна q= 1–р =1–0,75=0,25.
Искомая вероятность по формуле Бернулли равна
.
Задача 1.21 . Два равносильных шахматиста играют в шахматы. Что вероятнее: выиграть две партии из четырех или три партии из шести (ничьи во внимание не принимаются)?
Решение . Играют равносильные шахматисты, поэтому вероятность выигрыша р = 1/2, следовательно, вероятность проигрыша q также равна 1/2. Т.к. во всех партиях вероятность выигрыша постоянна и безразлична, в какой последовательности будут выиграны партии, то применима формула Бернулли.
Найдем вероятность того, что две партии из четырех будут выиграны:

Найдем вероятность того, что будут выиграны три партии из шести:

Т.к. P 4 (2) > P 6 (3), то вероятнее выиграть две партии из четырех, чем три из шести.
Однакоможно видеть, что пользоваться формулой Бернулли при больших значениях n достаточно трудно, так как формула требует выполнения действий над громадными числами и поэтому в процессе вычислений накапливаются погрешности; в итоге окончательный результат может значительно отличаться от истинного.
Для решения этой проблемы существуют несколько предельных теорем, которые используются для случая большого числа испытаний.
1. Теорема Пуассона
При проведении большого числа испытаний по схеме Бернулли (при n => ∞) и при малом числе благоприятных исходов k (при этом предполагается, что вероятность успеха p мала), формула Бернулли приближается к формуле Пуассона
.
Пример 1.22. Вероятность брака при выпуске предприятием единицы продукции равна p =0,001. Какая вероятность, что при выпуске 5000 единиц продукции из них будет менее 4 бракованных (событие А Решение . Т.к. n велико, воспользуемся локальной теоремой Лапласа:

Вычислим x :
Функция – четная, поэтому φ(–1,67) = φ(1,67).
По таблице приложения П.1 найдем φ(1,67) = 0,0989.
Искомая вероятность P 2400 (1400) = 0,0989.
3. Интегральная теорема Лапласа
Если вероятность р появления события A в каждом испытании по схеме Бернулли постоянна и отлична от нуля и единицы, то при большом числе испытаний n , вероятность Р п (k 1 , k 2) появления события A в этих испытаниях от k 1 доk 2 раз приближенно равна
Р п (k 1 , k 2) = Φ (x"" ) – Φ (x" ), где
– функция Лапласа,

Определенный интеграл, стоящий в функции Лапласа не вычисляется на классе аналитических функций, поэтому для его вычисления используется табл. П.2, приведенная в приложении.
Пример 1.24. Вероятность появления события в каждом из ста независимых испытаний постоянна и равна p = 0,8. Найти вероятность того, что событие появится: a) не менее 75 раз и не более 90 раз; б) не менее 75 раз; в) не более 74 раз.
Решение . Воспользуемся интегральной теоремой Лапласа:
Р п (k 1 , k 2) = Φ (x"" ) – Φ(x" ), где Ф(x ) – функция Лапласа,

а) По условию, n = 100, p = 0,8, q = 0,2, k 1 = 75, k 2 = 90. Вычислим x"" и x" :


Учитывая, что функция Лапласа нечетна, т.е. Ф(-x ) = – Ф( x ), получим
P 100 (75;90) = Ф (2,5) – Ф(–1,25) = Ф(2,5) + Ф(1,25).
По табл. П.2. приложения найдем:
Ф(2,5) = 0,4938; Ф(1,25) = 0,3944.
Искомая вероятность
P 100 (75; 90) = 0,4938 + 0,3944 = 0,8882.
б) Требование, чтобы событие появилось не менее 75 раз, означает, что число появлений события может быть равно 75, либо 76, …, либо 100. Т.о., в рассматриваемом случае следует принять k 1 = 75, k 2 = 100. Тогда

.
По табл. П.2. приложения найдем Ф(1,25) = 0,3944; Ф(5) = 0,5.
Искомая вероятность
P 100 (75;100) = (5) – (–1,25) = (5) + (1,25) = 0,5 + 0,3944 = 0,8944.
в) Событие – «А появилось не менее 75 раз» и «А появилось не более 74 раз» противоположны, поэтому сумма вероятностей этих событий равна 1. Следовательно, искомая вероятность
P 100 (0;74) = 1 – P 100 (75; 100) = 1 – 0,8944 = 0,1056.