Сделать лазерный луч. Мощный лазер своими руками за один вечер. Чему следует уделить предельное внимание при выборе специалиста или клиники

Сделать лазерный луч. Мощный лазер своими руками за один вечер. Чему следует уделить предельное внимание при выборе специалиста или клиники

Изготовление лазера в домашних условиях требует элементарных знаний физики и соблюдения мер предосторожности. Сделать прибор самостоятельно несложно. Потребуется набор инструментов, усидчивость, терпение и свободное время.

Вводный инструктаж

Важно знать и соблюдать правила безопасности при работе с диодами. Устройства боятся перепадов температур, нагревания, холода, статического электричества.

Чтоб ничего не мешало, необходимо освободить стол от посторонних вещей. Работают на деревянном покрытии, из под стола и рабочего места убирают ковер.

Запрещается направлять лазер в глаза, на окружающих людей, животных. Луч способен нанести травмы и безвозвратно повредить зрение.

Желательно работать одному, исключить пребывание на месте проведения опытов людей и домашних животных. Прибор хранят в недоступных для детей местах.

Мощность изделия по нижеописанным технологиям составляет 300мВт. Будьте благоразумны, и всегда думайте о безопасности.

Минимальный набор инструментов:

  • Средства защиты глаз;
  • диод или содержащий его прибор, резистор;
  • отвертка, нож, кусачки;
  • паяльник, провода;
  • мультиметр или документы на диод;
  • лазерная указка.

Излучатель будем добывать из старого оборудования.

Добыча лазера

Для изготовления лазера в домашних условиях потребуется привод DVD-RW. Устройство без функции записи не используют. Скорость записи должна составлять 16х или более. Иногда в приводе установлена одна головка с пишущим и читающим излучателями. Нужный элемент определяют по типу излучения: читающий светится в инфракрасном, пишущий – в красном диапазоне.


С помощью отвертки разбирают корпус привода. Извлекают подвижную часть с лазерной головкой, снимают оптику. Убирают клей, достают диод. Возможно, потребуются клещи или плоскогубцы, чтобы проделать эту операцию (зависит от качества склейки).

Диод снабжен тремя выходами. Средний – в большинстве случаев дает минус, а один из крайних – плюс. Требуется найти плюс и нулевую фазу. Информация о полюсах есть в справочниках и даташите к конкретному диоду. Если нет доступа к документации, используйте мультиметр с функцией прозвонки диодов.

При поиске контактов требуется подключить резистор с сопротивлением от 10 до 100 Ом. Он необходим для сохранения работоспособности диода. Не рекомендуется использовать пальчиковые батарейки на этом этапе. Через резистор подключают плюсовой щуп мультиметра поочередно к каждому выводу. Минусовой щуп присоединяют к алюминиевому корпусу. По лучу определяют выход с плюсовой полярностью.

Аналогично извлекают диоды из компьютерной мыши и пульта ДУ, но мощность излучения у них намного меньше.

Простая сборка

  • просовываем многожильный оголенный провод из меди в отверстие между платой и радиатором;
  • оборачиваем им плату;
  • смыкаем и завязываем концы провода.

Подготовленный лазер нельзя просто подключить к батарейке, потому используем готовую электронную схему.

Для первого опыта подойдет китайская указка. Раскручиваем механизм на две части, вынимаем внутренности и удаляем слабый диод. Спиливаем нижнюю часть крепежа для излучателя и подравниваем ее напильником.

Самодельный модуль освобождаем от многожильного провода. Устанавливаем в отверстие и закрепляем на термоклей. Собираем указку заново уже с новым диодом.

Спаивание по схеме

Первый вариант не дает гарантии долгой службы и максимального свечения. Стандартная схема раскроет потенциал устройства только на половину мощности. Чтоб получить всю мощь лазера, нужно дорабатывать схему.

Мастера советуют новичкам использовать микросхему LM317. Она рассчитана на 200мА. Ток равен 1,25/сопротивление резистора. Рекомендуется резистор мощностью 2Вт. Схема продается в любом магазине радиодеталей. Питается от любого источника тока 5-15В (4 пальчиковые батарейки или 2 литиевых аккумулятора). Главное при спаивании — не перепутать полярность.

Изготавливаем стабилизатор тока. Микросхема имеет три вывода: вход, выход и Adjust. Подпаиваем один конец резистора к выходу или корпусу схемы — разницы нет: корпус и средний контакт соединены. Свободный конец резистора подпаиваем ко входу Adjust.

Спаиваем провода разного цвета с микросхемой. Желтый провод закрепляем на контакте Adjust и батарейке, красный – на выводе входа и плюсе излучателя.

Стабилизатор будет работать на половину мощности, следует проверить работу в этом режиме. Силу увеличиваем последовательным соединением дополнительных резисторов. Средний выход, за ненадобностью, откусывают плоскогубцами.

Проверяем исправность и проводим фокусировку луча.

Фокусируем лазер на ровной поверхности, перед ним ставим линзу. Оптику берем из разобранного привода. Ловим оптимальное расстояние и запоминаем его, фокус определяется только опытным путем. Перед линзой растягиваем изоленту или подносим спички. Луч должен порезать или поджечь материал.


Заключительный этап

Эстетика прибора оставляет желать лучшего. Лазер необходимо оформить в корпус. Коробкой могут послужить:

  • Фонарик;
  • компьютерная мышь;
  • пульт ДУ;
  • своими вариантами оформления, поделитесь в комментариях.

Выбирать корпус следует исходя из размеров аппарата. Лазер, спаянный по схеме LM317, помещается в фонарик.

Вещь получилась интересная, но бесполезная. Максимум — жечь бумагу и темный пластик. Изготовление мощных устройств, способных резать железо и дерево, без спец-оборудования невозможно.

Подборка видео по изготовлению лазера




Сделать мощный прожигающий лазер своими руками – несложная задача, однако, кроме умения пользоваться паяльником, потребуется внимательность и аккуратность подхода. Сразу стоит отметить, что глубокие познания из области электротехники здесь не нужны, а смастерить устройство можно даже в домашних условиях. Главное при работе – это соблюдение мер предосторожности, так как воздействие лазерного луча губительно для глаз и кожи.

Лазер – опасная игрушка, которая может нанести вред здоровью при его неаккуратном использовании. Запрещается направлять лазер на людей и животных!

Что потребуется?

Любой лазер можно разбить на несколько составляющих:

  • излучатель светового потока;
  • оптика;
  • источник питания;
  • стабилизатор питания по току (драйвер).

Чтобы сделать мощный самодельный лазер, потребуется рассмотреть все эти составляющие по отдельности. Наиболее практичным и простым в сборке является лазер на основе лазерного диода, его и рассмотрим в данной статье.

Откуда взять диод для лазера?

Рабочий орган любого лазера – это лазерный диод. Его можно купить почти в любом магазине радиотехнике, либо достать из нерабочего привода для компакт-дисков. Дело в том, что неработоспособность привода редко связана с выходом из строя лазерного диода. Имея в наличии сломанный привод можно без лишних затрат достать нужный элемент. Но нужно учесть, что его тип и свойства зависят от модификации привода.

Самый слабый лазер, работающий в инфракрасном диапазоне, установлен в CD-ROM дисководах. Его мощности хватает только для считывания CD дисков, а луч почти невидим и не способен прожигать предметы. В CD-RW встроен более мощный лазерный диод, пригодный для прожига и рассчитанный на ту же длину волны. Он считается наиболее опасным, так как излучает луч в невидимой для глаза зоне спектра.

Дисковод DVD-ROM оснащён двумя слабыми лазерными диодами, энергии которых хватает только для чтения CD и DVD дисков. В пишущем приводе DVD-RW установлен красный лазер большой мощности. Его луч виден при любом освещении и может легко воспламенять некоторые предметы.

В BD-ROM стоит фиолетовый или синий лазер, который по параметрам схож с аналогом из DVD-ROMа. Из пишущих BD-RE можно достать наиболее мощный лазерный диод с красивым фиолетовым или синим лучом, способным к прожигу. Однако найти для разборки такой привод достаточно сложно, а рабочее устройство стоит дорого.

Самым подходящим является лазерный диод, взятый из пишущего привода DVD-RW дисков. Наиболее качественные лазерные диоды установлены в LG, Sony и Samsung приводах.

Чем выше скорость записи DVD привода, тем мощнее установлен в нем лазерный диод.

Разбор привода

Имея перед собой привод, первым делом снимают верхнюю крышку, открутив 4 винта. Затем извлекают подвижный механизм, который находится в центре и соединён с печатной платой гибким шлейфом. Следующая цель – лазерный диод, надёжно впрессованный в радиаторе из алюминиевого или дюралевого сплава. Перед его демонтажем рекомендуется обеспечить защиту от статического электричества. Для этого выводы лазерного диода спаивают или обматывают тонкой медной проволокой.

Далее возможны два варианта. Первый подразумевает эксплуатацию готового лазера в виде стационарной установки вместе со штатным радиатором. Второй вариант – это сборка устройства в корпусе переносного фонарика или лазерной указки. В этом случае придётся приложить силу, чтобы раскусить или распилить радиатор, не повредив излучающий элемент.

Драйвер

К питанию лазера необходимо отнестись ответственно. Как и для светодиодов, это должен быть источник стабилизированного тока. В интернете встречается множество схем с питанием от батарейки или аккумулятора через ограничительный резистор. Достаточность такого решения сомнительна, так как напряжение на аккумуляторе или батарейки меняется в зависимости от уровня заряда. Соответственно ток, протекающий через излучающий диод лазера, будет сильно отклоняться от номинального значения. В результате на малых токах устройство будет работать не эффективно, а на больших – приведёт к быстрому снижению интенсивности его излучения.

Оптимальным вариантом считается использование простейшего стабилизатора тока, построенного на базе . Данная микросхема относится к разряду универсальных интегральных стабилизаторов с возможностью самостоятельного задания тока и напряжения на выходе. Работает микросхема в широком диапазоне входных напряжений: от 3 до 40 вольт.

Аналогом LM317 является отечественная микросхема КР142ЕН12.

Для первого лабораторного эксперимента подойдет схема, приведенная ниже. Расчет единственного в схеме резистора производят по формуле: R=I/1,25, где I – номинальный ток лазера (справочное значение).

Иногда на выходе стабилизатора параллельно диоду устанавливают полярный конденсатор на 2200 мкФх16 В и неполярный конденсатор на 0,1 мкФ. Их участие оправдано в случае подачи напряжения на вход от стационарного блока питания, который может пропустить незначительную переменную составляющую и импульсную помеху. Одна из таких схем, рассчитанная на питание от батарейки “Крона” или небольшого аккумулятора, представлена ниже.

На схеме указано примерное значение резистора R1. Для его точного расчета необходимо воспользоваться вышеприведенной формулой.

Собрав электрическую схему, можно сделать предварительное включение и как доказательство работоспособности схемы, наблюдать ярко-красный рассеянный свет излучающего диода. Измерив его реальный ток и температуру корпуса, стоит задуматься о необходимости установки радиатора. Если лазер будет использоваться в стационарной установке на больших токах длительное время, то нужно обязательно предусмотреть пассивное охлаждение. Теперь для достижения цели осталось совсем немного: произвести фокусировку и получить узконаправленный луч большой мощности.

Оптика

Выражаясь по-научному, пришло время соорудить простой коллиматор, устройство для получения пучков параллельных световых лучей. Идеальным вариантом для этой цели будет штатная линза, взятая из привода. С её помощью можно получить довольно тонкий луч лазера диаметром около 1 мм. Количества энергии такого луча достаточно, чтобы насквозь прожигать бумагу, ткань и картон в считаные секунды, плавить пластик и выжигать по дереву. Если сфокусировать более тонкий луч, то данным лазером можно резать фанеру и оргстекло. Но настроить и надежно закрепить линзу от привода достаточно сложно из-за ее малого фокусного расстояния.

Намного проще соорудить коллиматор на основе лазерной указки. К тому же в её корпусе можно поместить драйвер и небольшой аккумулятор. На выходе получится луч в диаметре около 1,5 мм меньшего прожигающего действия. В туманную погоду или при обильном снегопаде можно наблюдать неимоверные световые эффекты, направив световой поток в небо.

Через интернет-магазин можно приобрести готовый коллиматор, специально предназначенный для крепления и настройки лазера. Его корпус послужит радиатором. Зная размеры всех составных частей устройства, можно купить дешевый светодиодный фонарик и воспользоваться его корпусом.

В заключение хочется добавить несколько фраз об опасности лазерного излучения. Во-первых, никогда не направляйте луч лазера в глаза людей и животных. Это приводит к серьёзным нарушениям зрения. Во-вторых, во время экспериментов с красным лазером надевайте зелёные очки. Они препятствуют прохождению большей части красной составляющей спектра. Количество света, прошедшее сквозь очки, зависит от длины волны излучения. Смотреть со стороны на луч лазера без защитных средств допускается лишь кратковременно. В противном случае может появиться боль в глазах.

Читайте так же

Не секрет, что каждому из нас в детстве хотелось иметь такое устройство, как лазерная установка, которая могла бы разрезать металлические уплотнения и прожигать стены. В современном мире эта мечта легко воплощается в реальность, поскольку теперь можно соорудить лазер с возможностью резки различных материалов.

Разумеется, в домашних условиях невозможно изготовить настолько мощную лазерную установку, которая будет прорезать железо или дерево. Но при помощи самодельного устройства можно резать бумагу, полиэтиленовое уплотнение или тонкий пластик.

Лазерным устройством можно выжигать различные узоры на листах фанеры или на дереве. Оно может использоваться в качестве подсветки объектов, расположенных в удаленной местности. Область его применения может быть как развлекательной, так и полезной в строительных и монтажных работах, не говоря о реализации творческого потенциала в сфере гравировки по дереву или оргстеклу.

Режущий лазер

Инструменты и принадлежности, которые потребуются для того, чтобы изготовить лазер своими руками:

Рисунок 1. Схема лазерного светодиода.

  • неисправный DVD-RW привод с рабочим лазерным диодом;
  • лазерная указка или портативный коллиматор;
  • паяльник и мелкие провода;
  • резистор на 1 Ом (2 шт.);
  • конденсаторы на 0,1 мкФ и 100 мкФ;
  • аккумуляторы типа ААА (3 шт.);
  • маленькие инструменты типа отвертки, ножика и напильника.

Этих материалов будет вполне достаточно для предстоящих работ.

Итак, для лазерного устройства в первую очередь необходимо подобрать DVD-RW привод с поломкой механического характера, поскольку оптические диоды должны быть в исправности. Если у вас отсутствует износившийся привод, придется приобрести его у людей, которые продают его на запчасти.

При покупке следует учитывать, что большинство приводов от производителя Samsung являются непригодными для изготовления режущего лазера. Дело в том, что эта компания выпускает DVD-приводы с диодами, которые не защищены от наружного воздействия. Отсутствие специального корпуса означает, что лазерный диод подвержен тепловым нагрузкам и загрязнению. Его можно повредить легким прикосновением руки.

Рисунок 2. Лазер из DVD-RW привода.

Оптимальным вариантом для лазера будет привод от производителя LG. Каждая модель оснащается кристаллом с различной степенью мощности. Этот показатель определяется скоростью записывания двухслойных DVD-дисков. Крайне важно, чтобы привод был именно записывающим, поскольку в нем содержится инфракрасный излучатель, который нужен для изготовления лазера. Обычный не подойдет, так как он предназначен только для считывания информации.

DVD-RW со скоростью записи 16Х оснащен красным кристаллом мощностью 180-200 мВт. Привод со скоростью 20Х содержит диод мощностью 250-270 мВт. Высокоскоростные записывающие устройства типа 22Х оборудуются лазерной оптикой, мощность которой достигает 300 мВт.

Вернуться к оглавлению

Разборка DVD-RW привода

Этот процесс должен проделываться с тщательной осторожностью, поскольку внутренние детали имеют хрупкую структуру, их легко повредить. Демонтировав корпус, вы сразу заметите необходимую деталь, она выглядит в виде небольшого стеклышка, расположенного внутри передвижной каретки. Его основание и нужно извлечь, оно отображено на рис.1. Этот элемент содержит оптическую линзу и два диода.

На этом этапе сразу следует предупредить, что лазерный луч является крайне опасным для человеческого зрения.

При прямом попадании в хрусталик он повреждает нервные окончания и человек может остаться слепым.

Лазерный луч обладает ослепляющим свойством даже на расстоянии 100 м, поэтому важно следить за тем, куда вы его направляете. Помните, что вы несете ответственность за здоровье окружающих, пока такое устройство находится в ваших руках!

Рисунок 3. Микросхема LM-317.

Перед тем как приступить к работе, необходимо знать, что лазерный диод можно повредить не только неосторожным обращением, но и перепадами напряжения. Это может случиться за считанные секунды, поэтому диоды работают на основе постоянного источника электричества. При повышении напряжения светодиод в устройстве превышает свою норму яркости, вследствие чего разрушается резонатор. Таким образом, диод теряет свою способность к нагреву, он становится обычным фонариком.

На кристалл воздействует и температура вокруг него, при ее падении производительность лазера возрастает при неизменном напряжении. Если она превысит стандартную норму, резонатор разрушается по схожему принципу. Реже диод повреждается под воздействием резких перепадов, которые обуславливаются частыми включениями и выключениями устройства в течение короткого периода.

После извлечения кристалла необходимо моментально перевязать его окончания оголенными проводами. Это нужно для создания соединения между его выходами напряжения. К этим выходам нужно припаять малый конденсатор на 0,1 мкФ с отрицательной полярностью и на 100 мкФ с положительной. После этой процедуры можно снять намотанные провода. Это поможет защитить лазерный диод от переходных процессов и статического электричества.

Вернуться к оглавлению

Питание

Перед созданием элемента питания для диода необходимо учесть, что он должен подпитываться от 3V и расходует до 200-400 мА в зависимости от скорости записывающего устройства. Следует избегать подсоединения кристалла к аккумуляторам напрямую, поскольку это не простая лампа. Он может испортиться даже под воздействием обычных батареек. Лазерный диод является автономным элементом, который подпитывается электричеством через регулирующий резистор.

Система питания может быть налажена тремя способами с различной степенью сложности. Каждый из них предполагает подпитку от постоянного источника напряжения (аккумуляторы).

Первый метод предполагает регуляцию электричеством при помощи резистора. Внутреннее сопротивление устройства измеряется путем определения напряжения во время прохода через диод. Для приводов со скоростью записи 16Х вполне достаточно будет 200 мА. При повышении этого показателя существует вероятность испортить кристалл, поэтому стоит придерживаться максимального значения в 300 мА. В качестве источника питания рекомендуется воспользоваться телефонным аккумулятором или пальчиковыми батарейками типа ААА.

Преимуществами этой схемы питания являются простота и надежность. Среди недостатков можно отметить дискомфорт при регулярной подзарядке аккумулятора от телефона и сложность размещения батареек в устройстве. Кроме того, трудно определить нужный момент для подзарядки источника питания.

Рисунок 4. Микросхема LM-2621.

Если вы используете три пальчиковых батарейки, эту схему можно легко обустроить в лазерной указке китайского производства. Готовая конструкция отображена на рис.2, два резистора на 1 Ом в последовательности и два конденсатора.

Для второго метода применяется микросхема LM-317. Этот способ обустройства системы питания намного сложнее предыдущего, он больше подойдет для стационарного типа лазерных установок. Схема основывается на изготовлении специального драйвера, который представляет собой небольшую плату. Она предназначена для ограничения электротока и создания необходимой мощности.

Цепь подключения микросхемы LM-317 отображена на рис.3. Для нее потребуются такие элементы, как переменный резистор на 100 Ом, 2 резистора на 10 Ом, диод серии 1Н4001 и конденсатор на 100 мкФ.

Драйвер на основе данной схемы поддерживает электрическую мощность (7V) вне зависимости от источника питания и окружающей температуры. Несмотря на сложность устройства эта схема считается простейшей для сборки в домашних условиях.

Третий метод является наиболее портативным, что делает его самым предпочтительным из всех. Он обеспечивает питание от двух батареек ААА, поддерживая постоянный уровень напряжения, подаваемого на лазерный диод. Система удерживает мощность даже при низком уровне заряда в аккумуляторах.

При полной разрядке батарейки схема перестанет функционировать, а через диод будет проходить небольшое напряжение, которое будет характеризоваться слабым свечением лазерного луча. Этот тип подачи питания является самым экономичным, его коэффициент полезности действия равняется 90%.

Для реализации такой системы питания понадобится микросхема LM-2621, которая размещена в корпусе размером 3×3 мм. Поэтому вы можете столкнуться с определенными трудностями в период припаивания деталей. Конечная величина платы зависит от ваших умений и сноровки, поскольку детали можно расположить даже на плате 2×2 см. Готовая плата отображена на рис.4.

Дроссель можно взять от обычного блока питания для стационарного компьютера. На него наматывается проволока с сечением 0,5 мм с количеством оборотов до 15 витков, как это показано на рисунке. Дроссельный диаметр изнутри составит 2,5 мм.

Для платы подойдет любой диод Шоттки со значением 3 А. К примеру, 1N5821, SB360, SR360 и MBRS340T3. Мощность, поступающая к диоду, настраивается резистором. В процессе настройки рекомендуется соединить его с переменным резистором на 100 Ом. При проверке работоспособности лучше всего использовать изношенный или ненужный лазерный диод. Показатель мощности тока остается таким же, как и на предыдущей схеме.

Подобрав наиболее подходящий метод, можно модернизировать его, если у вас есть необходимые для этого навыки. Лазерный диод нужно размещать на миниатюрном радиаторе, чтобы он не перегревался при повышении напряжения. По завершении сборки системы питания нужно позаботиться об установке оптического стекла.

Многие технические изобретения человек почерпнул, наблюдая за природными явлениями, анализируя их и применяя полученные знания в окружающей реальности. Так человек получил способность разжигать огонь, создал колесо, научился генерировать электричество, получил контроль над ядерной реакцией.

В отличие от всех этих изобретений лазер не имеет аналогов в природе. Его возникновение было связано исключительно с теоретическими предположениями в рамках зарождающейся квантовой физики. Существование принципа, который лег в основу лазера, было предсказано в начале ХХ в величайшим ученым Альбертом Эйнштейном.

Слово «лазер» появилось в результате сокращения пяти слов, описывающих сущность физического процесса, до первых букв. В русском варианте этот процесс называется «усилением света с помощью индуцированного излучения».

По принципу своей работы лазер является квантовым генератором фотонов. Суть явления, лежащего в его основе, заключается в том, что под действием энергии в виде фотона атом излучает другой фотон, который идентичен первому по направлению движения, своей фазе и поляризации. В результате излученный свет усиливается.

Данное явление невозможно в условиях термодинамического равновесия. Для создания индуцированного излучения используют различные способы: электрические, химические, газовые и другие. Лазеры, используемые в бытовых условиях (лазерные дисковые приводы, лазерные принтеры) используют полупроводниковый способ стимуляции излучения под действием электрического тока.

Принцип работы заключается в прохождении потока воздуха через нагреватель в трубку термофена и, достигнув установленных температур, попадании через специальные насадки на паяемую деталь.

При возникновении неисправностей сварочный инвертор можно починить своими руками. Советы по ремонту можно прочитать .

Кроме того, необходимым компонентом любого полноценного лазера является оптический резонатор , функция которого заключается в усилении пучка света путем его многократного отражения. С этой целью в лазерных установках используются зеркала.

Следует сказать, что создать настоящий мощный лазер своими руками в домашних условиях нереально. Для этого необходимо обладать специальными знаниями, проводить сложные расчеты, иметь хорошую материально-техническую базу.

Например, лазерные установки, которые могут резать металл, чрезвычайно нагреваются и требуют экстремальных мер охлаждения, включающих использование жидкого азота. Кроме того, устройства, работающие на основе квантового принципа, крайне капризны, требуют тончайшей настройки и не терпят даже малейших отклонений от нужных параметров.

Необходимые компоненты для сборки

Для сборки схемы лазера своими руками потребуется:

  • DVD-ROM с функцией перезаписи (RW). Имеет в своем составе красный лазерный диод мощностью 300 мВт. Можно использовать лазерные диоды из BLU-RAY-ROM-RW – они излучают фиолетовый свет мощностью 150 мВт. Для наших целей лучшие ROM’ы – это те, которые имеют большую скорость записи: они более мощные.
  • Импульсный NCP1529. Преобразователь выдает ток силой 1А, стабилизирует напряжение в диапазоне 0,9-3,9 В. Эти показатели являются идеальными для нашего лазерного диода, который требует постоянного напряжения в 3 В.
  • Коллиматор для получения ровного пучка света. Сейчас в продаже представлены многочисленные лазерные модули от различных производителей, в том числе и коллиматоры.
  • Выходная линза из ROM.
  • Корпус, например, от лазерной указки или фонарика.
  • Провода.
  • Батарейки 3,6 В.

Для соединения деталей потребуется . Кроме того, потребуются отвертка и пинцет.

Как сделать лазер из дисковода?

Порядок сборки простейшего лазера состоит из следующих этапов.


Сделать совсем не сложно. Разница в количестве контактов. В проходном выключателе, в отличие от простого, три контакта вместо двух.

Таким образом можно собрать наиболее простой лазер. Что может делать такой кустарно изготовленный «усилитель света»:

  • Зажигать спичку на расстоянии.
  • Плавить полиэтиленовые пакеты и тонкую бумагу.
  • Испускать луч на расстояние более 100 метров.
Такой лазер представляет опасность: он не прожжет кожу или одежду, но может повредить глаза.
Поэтому пользоваться таким устройством нужно осторожно: не светить им в отражающие поверхности (зеркала, стекла, светоотражатели) и в целом быть предельно аккуратным – луч может причинить вред, попав в глаз даже с расстояния в сто метров.

Лазер своими руками на видео

Дата: 28.01.2016

Комментариев: 0

Комментариев: 0

Лазерная коррекция зрения представляет собой один из наиболее эффективных и популярных методов корректировки зрения. Использование этого метода является максимально безопасным для пациента, которому требуется проведение корректировки работы зрительного аппарата. Лазерная коррекция зрения используется для исправления любого вида нарушений.

Благодаря технологиям и качеству работы лазерного оборудования достигается точность проведения вмешательства, что дает шанс возвращения зрения большому количеству страдающих нарушениями функций органа зрения. Лазерную коррекцию проводят как по показаниям, при выявлении значительной разницы в остроте зрения между глазами человека, так и по желанию самого пациента. Однако, в последнем случае проводится вмешательство только если отсутствуют противопоказания.

Противопоказания при использовании методов лазерной коррекции работы органов зрения

Невзирая на наличие широких возможностей, которые присущи лазерной коррекции зрения, при ее выполнении существуют определенные противопоказания. Основными ограничениями, при которых лазерная коррекция опасна, являются следующие:

Наиболее распространенными методами лазерной коррекции зрения на сегодняшний день являются методы фотореактивной кератэктомии и лазерного кератомилеза.

Вернуться к оглавлению

Метод фоторефракционной кератэктомии

Первая попытка применения эксимерного лазера в медицине для лечения заболеваний органов зрения была осуществлена в 1985 году. Сама технология использования эксимерного лазера представляет собой бесконтактное воздействие световым пучком лазера на поверхность роговицы. Такой тип воздействия не влияет на внутренние слои роговицы и структуры глазного яблока.

При использовании метода ФРК микроискажение осуществляется на наружном слое роговицы. При использовании этого метода лечения заживление тканей поверхностного слоя происходит на протяжении длительного времени. После проведения оперативного вмешательства пациент длительное время должен пользоваться глазными каплями. Лечение при помощи этого метода нельзя проводить одновременно на обоих глазах.

Существуют определенные физиологические границы при применении метода фоторефракционной кератэктомии. Основными параметрами этих физиограниц являются следующие:

  • близорукость должна составлять от -1.0 до -6.0 диоптрий;
  • дальнозоркость может составлять до +3.0 диоптрий;
  • астигматизм не должен превышать показаний от -0.5 до -3.0 диоптрий.

Оперативное вмешательство по методу ФРК делается под воздействием местного наркоза. В качестве наркоза, когда делают лазерную коррекцию зрения, используют специальные обезболивающие глазные капли.

При проведении операции пациент не ощущает боли, а заживление операционного поля происходит на протяжении 1-3 дней. В этот период происходит полное восстановление слоев роговицы глаза, который подвергся оперативному вмешательству. В первый послеоперационный период больной может испытывать достаточно сильный дискомфорт, который выражается в слезотечении и ощущении боли и рези в глазу, также может появляться чувство светобоязни.

Сразу после проведения лазерной коррекции зрения пациенту рекомендуется в первые несколько дней находиться в помещении с приглушенным светом, помимо этого, нужно провести симптоматическое лечение и строго соблюдать правила септики и антисептики, так как поверхность представляет собой микроэрозию. Врач рекомендует пациенту использование глазных капель, облегчающих заживление, на протяжении одного месяца.

Преимуществами метода являются:

  • операция безболезненная;
  • не требуется непосредственного контакта с тканями глазного яблока;
  • небольшое время операционного вмешательства;
  • высочайшая точность проведения операции;
  • возможность прогнозирования результата вмешательства.

Как и после любого хирургического вмешательства, после ФРК могут возникать разные осложнения и последствия. Однако, при выполнении всех медицинских требований вероятность возникновения осложнений является минимальной. Одним из последствий лазерной коррекции по методу ФРК может быть возникновение световых бликов у источника света в сумерках или темноте.

Вернуться к оглавлению

Методика лазерного кератомилеза, метод LASIK

Методика лазерного кератомилеза представляет более совершенную по сравнению ФРК методику, которая является более эффективной и безопасной технологией оперативного вмешательства, дающей широкие возможности при лечении нарушений работы зрительного аппарата. Можно делать коррекцию зрения с использованием метода LASIK даже при наличии близорукости в диапазоне до — 15 диоптрий. Фактором, который способен ограничить применение метода, является толщина роговицы. При близорукости более -15 диоптрий роговица является очень тонкой, что может при использовании этого метода коррекции привести к появлению осложнений.

У пациентов, которым рекомендовано проведение оперативного вмешательства, возникает вопрос о том, как делают лазерную коррекцию по методике LASIK. Лазерная коррекция зрения LASIK — метод современный, на стыке технологий, использующих лазер и методики микрохирургии глаза. Луч специального лазера в процессе проведения операции осуществляет испарение внутренних слоев роговицы на заранее заданную глубину. Доступ к глубинным слоям открывается путем отделения поверхностного роговичного лоскута с помощью микрокератома. После завершения работы лазера роговичный лоскут возвращается на место.

Лазерная коррекция зрения обладает большим количеством преимуществ, основными из которых являются следующие:

  • точность проведения операции при соблюдении щадящего режима;
  • небольшой восстановительный период после операции;
  • безболезненность вмешательства;
  • возможность проведения вмешательства на обоих глазах одновременно.

Неприятные ощущения после операции могут возникать в течение нескольких часов, а глазные капли используются на протяжении 10 дней. Осложнения, возникающие после проведения операции, связаны в основном с ошибками врача.