Изобретатель атомной бомбы первый. Кто на самом деле создал атомную бомбу

Изобретатель атомной бомбы первый. Кто на самом деле создал атомную бомбу

В СССР должна наладиться демократическая форма управления.

Вернадский В.И.

Атомная бомба в СССР была создана 29 августа 1949 года (первый успешный запуск). Руководил проектом академик Игорь Васильевич Курчатов. Период разработки атомного оружия в СССР длился с 1942 года, и закончился испытанием на территории Казахстана. Это нарушило монополию США на подобного рода вооружение, ведь с 1945 года единственной ядерной державой были именно они. Статья посвящена описанию истории возникновения советской ядерной бомбы, а также характеристике последствий этих событий для СССР.

История создания

В 1941 году представители СССР в Нью-Йорке передали Сталину информацию о том, что в США проходит встреча ученых-физиков, которая посвящена вопросам разработки ядерного вооружения. Советские ученые 1930-х годов также работали над исследованием атома, самым известным было расщепление атома учеными из Харькова во главе с Л.Ландау. Однако до реального применения в вооружении дело не доходило. Над этим кроме США работала нацистская Германия. В конце 1941 года в США начали свой атомный проект. Сталин узнал об этом в начале 1942 года и подписал указ о создании в СССР лаборатории по созданию атомного проекта, ее руководителем стал академик И.Курчатов.

Существует мнение, что работу ученых США ускорили секретные разработки немецких коллег, которые попали в Америку. В любом случае, летом 1945 года на Потсдамской конференции новый президент США Г.Трумэн сообщил Сталину о завершение работы над новым оружием – атомной бомбой. Более того, для демонстрации работы американских ученых, правительство США решило испытать новое оружие в бою: 6 и 9 августа бомбы были сброшены на два японских города, Хиросиму и Нагасаки. Это был первый случай, когда человечество узнало о новом оружии. Именно это событие заставило Сталина ускорить работу своих ученых. И.Курчатова вызвал к себе Сталин и пообещал выполнить любые требования ученого, лишь бы процесс шел как можно быстрее. Более того, был создан государственный комитет при Совнаркоме, который курировал советский атомный проект. Возглавил его Л.Берия.

Разработка переместилась в три центра:

  1. Конструкторское бюро Кировского завода, работающее над созданием специального оборудования.
  2. Диффузный завод на Урале, который должен был работать над созданием обогащенного урана.
  3. Химико-металлургические центры, в которых изучали плутоний. Именно этот элемент использовался в первой ядерной бомбе советского образца.

В 1946 году был создан первый советский единый ядерный центр. Это был секретный объект Арзамас-16, находящийся в городе Саров (Нижегородская область). В 1947 году создали первый атомный реактор, на предприятии под Челябинском. В 1948 году был создан секретный полигон на территории Казахстана, возле города Семипалатинск-21. Именно здесь 29 аавгуста 1949 года было организован первый взрыв советской атомной бомбы РДС-1. Это событие держалось в полном секрете, однако американская тихоокеанская авиация смогла зафиксировать резкое повышение уровня радиации, что было доказательством испытания нового оружия. Уже в сентябре 1949 году Г.Трумэн заявил о наличие в СССР атомной бомбы. Официально СССР признался в наличие этого оружия только в 1950 году.

Можно выделить несколько главных последствий успешной разработки советскими учеными атомного оружия:

  1. Потеря США статуса единого государства с атомным оружием. Это не только уравнивало СССР с США по военной мощи, но и заставило последних продумывать каждый свой военный шаг, поскольку теперь нужно было опасаться за ответную реакцию руководства СССР.
  2. Наличие атомного оружия у СССР закрепило за ним статус сверхдержавы.
  3. После уравнивания США и СССР в наличие атомного оружия, началась гонка за его количеством. Государства тратили огромные финансы, чтобы превзойти конкурента. Более того, начались попытки создания еще более мощного оружия.
  4. Эти события послужили стартом ядерной гонки. Многие страны начали вкладывать ресурсы, чтобы пополнить список ядерных государств и обеспечить себе безопасность.

12 августа 1953 года в 7.30 утра на Семипалатинском полигоне была испытана первая советская водородная бомба , которая имела служебное название "Изделие РДС‑6c". Это было четвертое по счету советское испытание ядерного оружия.

Начало первых работ по термоядерной программе в СССР относится ещё к 1945 году . Тогда была получена информация об исследованиях, ведущихся в США над термоядерной проблемой. Они были начаты по инициативе американского физика Эдварда Теллера в 1942 году. За основу была взята теллеровская концепция термоядерного оружия, получившая в кругах советских ученых‑ядерщиков название "труба" ‑ цилиндрический контейнер с жидким дейтерием, который должен был нагреваться от взрыва инициирующего устройства типа обычной атомной бомбы. Только в 1950 году американцы установили, что "труба" бесперспективна, и они продолжили разработку других конструкций. Но к этому времени советскими физиками уже была самостоятельно разработана другая концепция термоядерного оружия, которая вскоре ‑ в 1953 году ‑ привела к успеху.

Альтернативную схему водородной бомбы придумал Андрей Сахаров. В основу бомбы им была положена идея "слойки" и применения дейтерида лития‑6. Разработанный в КБ‑11 (сегодня это город Саров, бывший Арзамас‑16, Нижегородская область) термоядерный заряд РДС‑6с представлял собой сферическую систему из слоев урана и термоядерного горючего, окруженных химическим взрывчатым веществом.

Академик Сахаров - депутат и диссидент 21 мая исполняется 90 лет со дня рождения советского физика, политического деятеля, диссидента, одного из создателя советской водородной бомбы, лауреата Нобелевской премии мира академика Андрея Сахарова. Он умер в 1989 году в возрасте 68 лет, семь из которых Андрей Дмитриевич провел в ссылке.

Для увеличения энерговыделения заряда в его конструкции был использован тритий. Основная задача при создании подобного оружия заключалась в том, чтобы с помощью энергии, выделенной при взрыве атомной бомбы, нагреть и поджечь тяжелый водород — дейтерий, осуществить термоядерные реакции с выделением энергии, способные сами себя поддерживать. Для увеличения доли "сгоревшего" дейтерия Сахаров предложил окружить дейтерий оболочкой из обычного природного урана, который должен был замедлить разлет и, главное, существенно повысить плотность дейтерия. Явление ионизационного сжатия термоядерного горючего, ставшее основой первой советской водородной бомбы, до сих пор называют "сахаризацией".

По результатам работ над первой водородной бомбой Андрей Сахаров получил звание Героя Соцтруда и лауреата Сталинской премии.

"Изделие РДС‑6с" было выполнено в виде транспортабельной бомбы весом 7 тонн, которая помещалась в бомбовом люке бомбардировщика Ту‑16. Для сравнения — бомба, созданная американцами, весила 54 тонн и была размером с трехэтажный дом.

Чтобы оценить разрушительные воздействия новой бомбы, на Семипалатинском полигоне построили город из промышленных и административных зданий. В общей сложности на поле имелось 190 различных сооружений. В этом испытании впервые были применены вакуумные заборники радиохимических проб, автоматически открывавшиеся под действием ударной волны. Всего к испытаниям РДС‑6с было подготовлено 500 различных измерительных, регистрирующих и киносъемочных приборов, установленных в подземных казематах и прочных наземных сооружениях. Авиационно‑техническое обеспечение испытаний — измерение давления ударной волны на самолет, находящийся в воздухе в момент взрыва изделия, забор проб воздуха из радиоактивного облака, аэрофотосъемка района осуществлялось специальной летной частью. Подрыв бомбы осуществлялся дистанционно, подачей сигнала с пульта, который находился в бункере.

Было решено произвести взрыв на стальной башне высотой 40 метров, заряд был расположен на высоте 30 метров . Радиоактивный грунт от прошлых испытаний был удален на безопасное расстояние, специальные сооружения были отстроены на своих же местах на старых фундаментах, в 5 метрах от башни был сооружен бункер для установки разработанной в ИХФ АН СССР аппаратуры, регистрирующей термоядерные процессы.

На поле установили военную технику всех родов войск. В ходе испытаний были уничтожены все опытные сооружения в радиусе до четырех километров. Взрыв водородной бомбы мог бы полностью разрушить город в 8 километров в поперечнике. Экологические последствия взрыва оказались ужасающими: на долю первого взрыва приходится 82% стронция‑90 и 75% цезия‑137.

Мощность бомбы достигла 400 килотонн, в 20 раз больше первых атомных бомб в США и СССР.

Уничтожение последнего ядерного заряда в Семипалатинске. Справка 31 мая 1995 г. на бывшем Семипалатинском полигоне был уничтожен последний ядерный заряд. Семипалатинский полигон был создан в 1948 г. специально для проведения испытаний первого советского ядерного устройства. Полигон располагался в северо-восточном Казахстане.

Работа по созданию водородной бомбы стала первой в мире интеллектуальной "битвой умов" поистине мирового масштаба. Создание водородной бомбы инициировало появление совершенно новых научных направлений — физики высокотемпературной плазмы, физики сверхвысоких плотностей энергии, физики аномальных давлений. Впервые в истории человечества было масштабно использовано математическое моделирование.

Работы по "изделию РДС‑6с" создали научно‑технический задел, который затем был использован в разработке несравнимо более совершенной водородной бомбы принципиально нового типа — водородной бомбы двухстадийной конструкции.

Водородная бомба сахаровской конструкции не только стала серьезным контраргументом в политическом противостоянии между США и СССР, но и послужила причиной бурного развития советской космонавтики тех лет. Именно после успешных ядерных испытаний ОКБ Королева получило важное правительственное задание разработать межконтинентальную баллистическую ракету для доставки к цели созданного заряда. В дальнейшем ракета, получившая название "семерка", вывела в космос первый искусственный спутник Земли , и именно на ней стартовал первый космонавт планеты Юрий Гагарин.

Материал подготовлен на основе информации открытых источников

Мир атома настолько фантастичен, что для его понимания требуется коренная ломка привычных понятий о пространстве и времени. Атомы так малы, что если бы каплю воды можно было увеличить до размеров Земли, то каждый атом в этой капле был бы меньше апельсина. В самом деле, одна капля воды состоит из 6000 миллиардов миллиардов (6000000000000000000000) атомов водорода и кислорода. И тем не менее, несмотря на свои микроскопические размеры, атом имеет строение до некоторой степени сходное со строением нашей солнечной системы. В его непостижимо малом центре, радиус которого менее одной триллионной сантиметра, находится относительно огромное «солнце» - ядро атома.

Вокруг этого атомного «солнца» вращаются крохотные «планеты» - электроны. Ядро состоит из двух основных строительных кирпичиков Вселенной - протонов и нейтронов (они имеют объединяющее название - нуклоны). Электрон и протон - заряженные частицы, причем количество заряда в каждом из них совершенно одинаково, однако заряды различаются по знаку: протон всегда заряжен положительно, а электрон - отрицательно. Нейтрон не несет электрического заряда и вследствие этого имеет очень большую проницаемость.

В атомной шкале измерений масса протона и нейтрона принята за единицу. Атомный вес любого химического элемента поэтому зависит от количества протонов и нейтронов, заключенных в его ядре. Например, атом водорода, ядро которого состоит только из одного протона, имеет атомную массу равную 1. Атом гелия, с ядром из двух протонов и двух нейтронов, имеет атомную массу, равную 4.

Ядра атомов одного и того же элемента всегда содержат одинаковое число протонов, но число нейтронов может быть разным. Атомы, имеющие ядра с одинаковым числом протонов, но отличающиеся по числу нейтронов и относящиеся к разновидностям одного и того же элемента, называются изотопами. Чтобы отличить их друг от друга, к символу элемента приписывают число, равное сумме всех частиц в ядре данного изотопа.

Может возникнуть вопрос: почему ядро атома не разваливается? Ведь входящие в него протоны - электрически заряженные частицы с одинаковым зарядом, которые должны отталкиваться друг от друга с большой силой. Объясняется это тем, что внутри ядра действуют еще и так называемые внутриядерные силы, притягивающие частицы ядра друг к другу. Эти силы компенсируют силы отталкивания протонов и не дают ядру самопроизвольно разлететься.

Внутриядерные силы очень велики, но действуют только на очень близком расстоянии. Поэтому ядра тяжелых элементов, состоящие из сотен нуклонов, оказываются нестабильными. Частицы ядра находятся здесь в беспрерывном движении (в пределах объема ядра), и если добавить им какое-то дополнительное количество энергии, они могут преодолеть внутренние силы - ядро разделится на части. Величину этой избыточной энергии называют энергией возбуждения. Среди изотопов тяжелых элементов есть такие, которые как бы находятся на самой грани самораспада. Достаточно лишь небольшого «толчка», например, простого попадания в ядро нейтрона (причем он даже не должен разгоняться до большой скорости), чтобы пошла реакция ядерного деления. Некоторые из этих «делящихся» изотопов позже научились получать искусственно. В природе же существует только один такой изотоп - это уран-235.

Уран был открыт в 1783 году Клапротом, который выделил его из урановой смолки и назвал в честь недавно открытой планеты Уран. Как оказалось в дальнейшем, это был, собственно, не сам уран, а его оксид. Чистый уран - металл серебристо-белого цвета - был получен
только в 1842 году Пелиго. Новый элемент не обладал никакими замечательными свойствами и не привлекал к себе внимания вплоть до 1896 года, когда Беккерель открыл явление радиоактивности солей урана. После этого уран сделался объектом научных исследований и экспериментов, но практического применения по-прежнему не имел.

Когда в первой трети XX века физикам более или менее стало понятно строение атомного ядра, они прежде всего попробовали осуществить давнюю мечту алхимиков - постарались превратить один химический элемент в другой. В 1934 году французские исследователи супруги Фредерик и Ирен Жолио-Кюри доложили Французской академии наук о следующем опыте: при бомбардировке пластин алюминия альфа-частицами (ядрами атома гелия) атомы алюминия превращались в атомы фосфора, но не обычные, а радиоактивные, которые свою очередь переходили в устойчивый изотоп кремния. Таким образом, атом алюминия, присоединив один протон и два нейтрона, превращался в более тяжелый атом кремния.

Этот опыт навел на мысль, что если «обстреливать» нейтронами ядра самого тяжелого из существующих в природе элементов - урана, то можно получить такой элемент, которого в естественных условиях нет. В 1938 году немецкие химики Отто Ган и Фриц Штрассман повторили в общих чертах опыт супругов Жолио-Кюри, взяв вместо алюминия уран. Результаты эксперимента оказались совсем не те, что они ожидали - вместо нового сверхтяжелого элемента с массовым числом больше, чем у урана, Ган и Штрассман получили легкие элементы из средней части периодической системы: барий, криптон, бром и некоторые другие. Сами экспериментаторы не смогли объяснить наблюдаемое явление. Только в следующем году физик Лиза Мейтнер, которой Ган сообщил о своих затруднениях, нашла правильное объяснение наблюдаемому феномену, предположив, что при обстреле урана нейтронами происходит расщепление (деление) его ядра. При этом должны были образовываться ядра более легких элементов (вот откуда брались барий, криптон и другие вещества), а также выделяться 2-3 свободных нейтрона. Дальнейшие исследования позволили детально прояснить картину происходящего.

Природный уран состоит из смеси трех изотопов с массами 238, 234 и 235. Основное количество урана приходится на изотоп-238, в ядро которого входят 92 протона и 146 нейтронов. Уран-235 составляет всего 1/140 природного урана (0, 7% (он имеет в своем ядре 92 протона и 143 нейтрона), а уран-234 (92 протона, 142 нейтрона) лишь - 1/17500 от общей массы урана (0, 006%. Наименее стабильным из этих изотопов является уран-235.

Время от времени ядра его атомов самопроизвольно делятся на части, вследствие чего образуются более легкие элементы периодической системы. Процесс сопровождается выделением двух или трех свободных нейтронов, которые мчатся с огромной скоростью - около 10 тыс. км/с (их называют быстрыми нейтронами). Эти нейтроны могут попадать в другие ядра урана, вызывая ядерные реакции. Каждый изотоп ведет себя в этом случае по-разному. Ядра урана-238 в большинстве случаев просто захватывают эти нейтроны без каких-либо дальнейших превращений. Но примерно в одном случае из пяти при столкновении быстрого нейтрона с ядром изотопа-238 происходит любопытная ядерная реакция: один из нейтронов урана-238 испускает электрон, превращаясь в протон, то есть изотоп урана обращается в более
тяжелый элемент - нептуний-239 (93 протона + 146 нейтронов). Но нептуний нестабилен - через несколько минут один из его нейтронов испускает электрон, превращаясь в протон, после чего изотоп нептуния обращается в следующий по счету элемент периодической системы - плутоний-239 (94 протона + 145 нейтронов). Если же нейтрон попадает в ядро неустойчивого урана-235, то немедленно происходит деление - атомы распадаются с испусканием двух или трех нейтронов. Понятно, что в природном уране, большинство атомов которого относятся к изотопу-238, никаких видимых последствий эта реакция не имеет - все свободные нейтроны окажутся в конце концов поглощенными этим изотопом.

Ну а если представить себе достаточно массивный кусок урана, целиком состоящий из изотопа-235?

Здесь процесс пойдет по-другому: нейтроны, выделившиеся при делении нескольких ядер, в свою очередь, попадая в соседние ядра, вызывают их деление. В результате выделяется новая порция нейтронов, которая расщепляет следующие ядра. При благоприятных условиях эта реакция протекает лавинообразно и носит название цепной реакции. Для ее начала может быть достаточно считанного количества бомбардирующих частиц.

Действительно, пусть уран-235 бомбардируют всего 100 нейтронов. Они разделят 100 ядер урана. При этом выделится 250 новых нейтронов второго поколения (в среднем 2, 5 за одно деление). Нейтроны второго поколения произведут уже 250 делений, при котором выделится 625 нейтронов. В следующем поколении оно станет равным 1562, затем 3906, далее 9670 и т.д. Число делений будет увеличиваться безгранично, если процесс не остановить.

Однако реально лишь незначительная часть нейтронов попадает в ядра атомов. Остальные, стремительно промчавшись между ними, уносятся в окружающее пространство. Самоподдерживающаяся цепная реакция может возникнуть только в достаточно большом массиве урана-235, обладающим, как говорят, критической массой. (Эта масса при нормальных условиях равна 50 кг.) Важно отметить, что деление каждого ядра сопровождается выделением огромного количества энергии, которая оказывается примерно в 300 миллионов раз больше энергии, затраченной на расщепление! (Подсчитано, что при полном делении 1 кг урана-235 выделяется столько же тепла, сколько при сжигании 3 тыс. тонн угля.)

Этот колоссальный выплеск энергии, освобождающейся в считанные мгновения, проявляет себя как взрыв чудовищной силы и лежит в основе действия ядерного оружия. Но для того чтобы это оружие стало реальностью, необходимо, чтобы заряд состоял не из природного урана, а из редкого изотопа - 235 (такой уран называют обогащенным). Позже было установлено, что чистый плутоний также является делящимся материалом и может быть использован в атомном заряде вместо урана-235.

Все эти важные открытия были сделаны накануне Второй мировой войны. Вскоре в Германии и в других странах начались секретные работы по созданию атомной бомбы. В США этой проблемой занялись в 1941 году. Всему комплексу работ было присвоено наименование «Манхэттенского проекта».

Административное руководство проектом осуществлял генерал Гровс, а научное - профессор Калифорнийского университета Роберт Оппенгеймер. Оба хорошо понимали огромную сложность стоящей перед ними задачи. Поэтому первой заботой Оппенгеймера стало комплектование высокоинтеллектуального научного коллектива. В США тогда было много физиков, эмигрировавших из фашистской Германии. Нелегко было привлечь их к созданию оружия, направленного против их прежней родины. Оппенгеймер лично говорил с каждым, пуская в ход всю силу своего обаяния. Вскоре ему удалось собрать небольшую группу теоретиков, которых он шутливо называл «светилами». И в самом деле, в нее входили крупнейшие специалисты того времени в области физики и химии. (Среди них 13 лауреатов Нобелевской премии, в том числе Бор, Ферми, Франк, Чедвик, Лоуренс.) Кроме них, было много других специалистов самого разного профиля.

Правительство США не скупилось на расходы, и работы с самого начала приняли грандиозный размах. В 1942 году была основана крупнейшая в мире исследовательская лаборатория в Лос-Аламосе. Население этого научного города вскоре достигло 9 тысяч человек. По составу ученых, размаху научных экспериментов, числу привлекаемых к работе специалистов и рабочих Лос-Аламосская лаборатория не имела себе равных в мировой истории. «Манхэттенский проект» имел свою полицию, контрразведку, систему связи, склады, поселки, заводы, лаборатории, свой колоссальный бюджет.

Главная цель проекта состояла в получении достаточного количества делящегося материала, из которого можно было бы создать несколько атомных бомб. Кроме урана-235 зарядом для бомбы, как уже говорилось, мог служить искусственный элемент плутоний-239, то есть бомба могла быть как урановой, так и плутониевой.

Гровс и Оппенгеймер согласились, что работы должны вестись одновременно по двум направлениям, поскольку невозможно наперед решить, какое из них окажется более перспективным. Оба способа принципиально отличались друг от друга: накопление урана-235 должно было осуществляться путем его отделения от основной массы природного урана, а плутоний мог быть получен только в результате управляемой ядерной реакции при облучении нейтронами урана-238. И тот и другой путь представлялся необычайно трудным и не сулил легких решений.

В самом деле, как можно отделить друг от друга два изотопа, которые лишь незначительно отличаются своим весом и химически ведут себя совершенно одинаково? Ни наука, ни техника никогда еще не сталкивались с такой проблемой. Производство плутония тоже поначалу казалось очень проблематичным. До этого весь опыт ядерных превращений сводился к нескольким лабораторным экспериментам. Теперь же предстояло в промышленном масштабе освоить производство килограммов плутония, разработать и создать для этого специальную установку - ядерный реактор, и научиться управлять течением ядерной реакции.

И там и здесь предстояло разрешить целый комплекс сложных задач. Поэтому «Манхэттенский проект» состоял из нескольких подпроектов, во главе которых стояли видные ученые. Сам Оппенгеймер был главой Лос-Аламосской научной лаборатории. Лоуренс заведовал Радиационной лабораторией Калифорнийского университета. Ферми вел в Чикагском университете исследования по созданию ядерного реактора.

Поначалу важнейшей проблемой было получение урана. До войны этот металл фактически не имел применения. Теперь, когда он потребовался сразу в огромных количествах, оказалось, что не существует промышленного способа его производства.

Компания «Вестингауз» взялась за его разработку и быстро добилась успеха. После очистки урановой смолы (в таком виде уран встречается в природе) и получения окиси урана, ее превращали в тетрафторид (UF4), из которого путем электролиза выделялся металлический уран. Если в конце 1941 года в распоряжении американских ученых было всего несколько граммов металлического урана, то уже в ноябре 1942 года его промышленное производство на заводах фирмы «Вестингауз» достигло 6000 фунтов в месяц.

Одновременно шла работа над созданием ядерного реактора. Процесс производства плутония фактически сводился к облучению урановых стержней нейтронами, в результате чего часть урана-238 должна была обратиться в плутоний. Источниками нейтронов при этом могли быть делящиеся атомы урана-235, рассеянные в достаточном количестве среди атомов урана-238. Но для того чтобы поддерживать постоянное воспроизводство нейтронов, должна была начаться цепная реакция деления атомов урана-235. Между тем, как уже говорилось, на каждый атом урана-235 приходилось 140 атомов урана-238. Ясно, что у разлетающихся во все стороны нейтронов было гораздо больше вероятности встретить на своем пути именно их. То есть, огромное число выделившихся нейтронов оказывалось без всякой пользы поглощенным основным изотопом. Очевидно, что при таких условиях цепная реакция идти не могла. Как же быть?

Сначала представлялось, что без разделения двух изотопов работа реактора вообще невозможна, но вскоре было установлено одно важное обстоятельство: оказалось, что уран-235 и уран-238 восприимчивы к нейтронам разных энергий. Расщепить ядро атома урана-235 можно нейтроном сравнительно небольшой энергии, имеющим скорость около 22 м/с. Такие медленные нейтроны не захватываются ядрами урана-238 - для этого те должны иметь скорость порядка сотен тысяч метров в секунду. Другими словами уран-238 бессилен помешать началу и ходу цепной реакции в уране-235, вызванной нейтронами, замедленными до крайне малых скоростей - не более 22 м/с. Это явление было открыто итальянским физиком Ферми, который с 1938 года жил в США и руководил здесь работами по созданию первого реактора. В качестве замедлителя нейтронов Ферми решил применить графит. По его расчетам, вылетевшие из урана-235 нейтроны, пройдя через слой графита в 40 см, должны были снизить свою скорость до 22 м/с и начать самоподдерживающуюся цепную реакцию в уране-235.

Другим замедлителем могла служить так называемая «тяжелая» вода. Поскольку атомы водорода, входящие в нее, по размерам и массе очень близки к нейтронам, они могли лучше всего замедлять их. (С быстрыми нейтронами происходит примерно то же, что с шарами: если маленький шар ударяется о большой, он откатывается назад, почти не теряя скорости, при встрече же с маленьким шаром он передает ему значительную часть своей энергии - точно так же нейтрон при упругом столкновении отскакивает от тяжелого ядра лишь незначительно замедляясь, а при столкновении с ядрами атомов водорода очень быстро теряет всю свою энергию.) Однако обычная вода не подходит для замедления, так как ее водород имеет тенденцию поглощать нейтроны. Вот почему для этой цели следует использовать дейтерий, входящий в состав «тяжелой» воды.

В начале 1942 года под руководством Ферми в помещении теннисного корта под западными трибунами Чикагского стадиона началось строительство первого в истории ядерного реактора. Все работы ученые проводили сами. Управление реакцией можно осуществлять единственным способом - регулируя число нейтронов, участвующих в цепной реакции. Ферми предполагал добиться этого с помощью стержней, изготовленных из таких веществ, как бор и кадмий, которые сильно поглощают нейтроны. Замедлителем служили графитовые кирпичи, из которых физики возвели колоны высотой в 3 м и шириной в 1, 2 м. Между ними были установлены прямоугольные блоки с окисью урана. На всю конструкцию пошло около 46 тонн окиси урана и 385 тонн графита. Для замедления реакции служили введенные в реактор стержни из кадмия и бора.

Если бы этого оказалось недостаточно, то для страховки на платформе, расположенной над реактором, стояли двое ученых с ведрами, наполненными раствором солей кадмия - они должны были вылить их на реактор, если бы реакция вышла из-под контроля. К счастью, этого не потребовалось. 2 декабря 1942 года Ферми приказал выдвинуть все контрольные стержни, и эксперимент начался. Через четыре минуты нейтронные счетчики стали щелкать все громче и громче. С каждой минутой интенсивность нейтронного потока становилась больше. Это говорило о том, что в реакторе идет цепная реакция. Она продолжалась в течение 28 минут. Затем Ферми дал знак, и опущенные стержни прекратили процесс. Так впервые человек освободил энергию атомного ядра и доказал, что может контролировать ее по своей воле. Теперь уже не было сомнения, что ядерное оружие - реальность.

В 1943 году реактор Ферми демонтировали и перевезли в Арагонскую национальную лабораторию (50 км от Чикаго). Здесь был вскоре
построен еще один ядерный реактор, в котором в качестве замедлителя использовалась тяжелая вода. Он состоял из цилиндрической алюминиевой цистерны, содержащей 6, 5 тонн тяжелой воды, в которую было вертикально погружено 120 стержней из металлического урана, заключенные в алюминиевую оболочку. Семь управляющих стержней были сделаны из кадмия. Вокруг цистерны располагался графитовый отражатель, затем экран из сплавов свинца и кадмия. Вся конструкция заключалась в бетонный панцирь с толщиной стенок около 2, 5 м.

Эксперименты на этих опытных реакторах подтвердили возможность промышленного производства плутония.

Главным центром «Манхэттенского проекта» вскоре стал городок Ок-Ридж в долине реки Теннеси, население которого за несколько месяцев выросло до 79 тысяч человек. Здесь в короткий срок был построен первый в истории завод по производству обогащенного урана. Тут же в 1943 году был пущен промышленный реактор, вырабатывавший плутоний. В феврале 1944 года из него ежедневно извлекали около 300 кг урана, с поверхности которого путем химического разделения получали плутоний. (Для этого плутоний сначала растворяли, а потом осаждали.) Очищенный уран после этого вновь возвращался в реактор. В том же году в бесплодной унылой пустыне на южном берегу реки Колумбия началось строительство огромного Хэнфордского завода. Здесь размещалось три мощных атомных реактора, ежедневно дававших несколько сот граммов плутония.

Параллельно полным ходом шли исследования по разработке промышленного процесса обогащения урана.

Рассмотрев разные варианты, Гровс и Оппенгеймер решили сосредоточить усилия на двух методах: газодиффузионном и электромагнитном.

Газодиффузионный метод основывался на принципе, известном под названием закона Грэхэма (он был впервые сформулирован в 1829 году шотландским химиком Томасом Грэхэмом и разработан в 1896 году английским физиком Рейли). В соответствии с этим законом, если два газа, один из которых легче другого, пропускать через фильтр с ничтожно малыми отверстиями, то через него пройдет несколько больше легкого газа, чем тяжелого. В ноябре 1942 года Юри и Даннинг из Колумбийского университета создали на основе метода Рейли газодиффузионный метод разделения изотопов урана.

Так как природный уран - твердое вещество, то его сначала превращали во фтористый уран (UF6). Затем этот газ пропускали через микроскопические - порядка тысячных долей миллиметра - отверстия в перегородке фильтра.

Так как разница в молярных весах газов была очень мала, то за перегородкой содержание урана-235 увеличивалось всего в 1, 0002 раза.

Для того чтобы увеличить количество урана-235 еще больше, полученную смесь снова пропускают через перегородку, и количество урана опять увеличивается в 1, 0002 раза. Таким образом, чтобы повысить содержание урана-235 до 99%, нужно было пропускать газ через 4000 фильтров. Это происходило на огромном газодиффузионном заводе в Ок-Ридж.

В 1940 году под руководством Эрнста Лоуренса в Калифорнийском университете начались исследования по разделению изотопов урана электромагнитным методом. Необходимо было найти такие физические процессы, которые позволили бы разделять изотопы, пользуясь разностью их масс. Лоуренс предпринял попытку разделить изотопы, используя принцип масс-спектрографа - прибора, с помощью которого определяют массы атомов.

Принцип его действия сводился к следующему: предварительно ионизированные атомы ускорялись электрическим полем, а затем пропускались через магнитное поле, в котором они описывали окружности, расположенные в плоскости, перпендикулярной направлению поля. Так как радиусы этих траекторий были пропорциональны массе, легкие ионы оказывались на окружностях меньшего радиуса, чем тяжелые. Если на пути атомов размещали ловушки, то можно было таким образом раздельно собирать различные изотопы.

Таков был метод. В лабораторных условиях он дал неплохие результаты. Но строительство установки, на которой разделение изотопов могло бы производиться в промышленных масштабах, оказалось чрезвычайно сложным. Однако Лоуренсу в конце концов удалось преодолеть все трудности. Результатом его усилий стало появление калутрона, который был установлен на гигантском заводе в Ок-Ридже.

Этот электромагнитный завод был построен в 1943 году и оказался едва ли не самым дорогостоящим детищем «Манхэттенского проекта». Метод Лоуренса требовал большого количества сложных, еще не разработанных устройств, связанных с высоким напряжением, высоким вакуумом и сильными магнитными полями. Масштабы затрат оказались огромны. Калутрон имел гигантский электромагнит, длина которого достигала 75 м при весе около 4000 тонн.

На обмотки для этого электромагнита пошло несколько тысяч тонн серебряной проволоки.

Все работы (не считая стоимости серебра на сумму 300 миллионов долларов, которое государственное казначейство предоставило только на время) обошлись в 400 миллионов долларов. Только за электроэнергию, затраченную калутроном, министерство обороны заплатило 10 миллионов. Большая часть оборудования ок-риджского завода превосходила по масштабам и точности изготовления все, что когда-либо разрабатывалось в этой области техники.

Но все эти затраты оказались не напрасными. Издержав в общей сложности около 2 миллиардов долларов, ученые США к 1944 году создали уникальную технологию обогащения урана и производства плутония. Тем временем в Лос-Аламосской лаборатории работали над проектом самой бомбы. Принцип ее действия был в общих чертах ясен уже давно: делящееся вещество (плутоний или уран-235) следовало в момент взрыва перевести в критическое состояние (для осуществления цепной реакции масса заряда должна быть даже заметно больше критической) и облучить пучком нейтронов, что влекло за собой начало цепной реакции.

По расчетам, критическая масса заряда превосходила 50 килограмм, но ее смогли значительно уменьшить. Вообще на величину критической массы сильно влияют несколько факторов. Чем больше поверхностная площадь заряда - тем больше нейтронов бесполезно излучается в окружающее пространство. Наименьшей площадью поверхности обладает сфера. Следовательно, сферические заряды при прочих равных условиях имеют наименьшую критическую массу. Кроме того, величина критической массы зависит от чистоты и вида делящихся материалов. Она обратно пропорциональна квадрату плотности этого материала, что позволяет, например, при увеличении плотности вдвое, уменьшить критическую массу в четыре раза. Нужную степень подкритичности можно получить, к примеру, уплотнением делящегося материала за счет взрыва заряда обычного взрывчатого вещества, выполненного в виде сферической оболочки, окружающей ядерный заряд. Критическую массу, кроме того, можно уменьшить, окружив заряд экраном, хорошо отражающим нейтроны. В качестве такого экрана могут быть использованы свинец, бериллий, вольфрам, природный уран, железо и многие другие.

Одна из возможных конструкций атомной бомбы состоит из двух кусков урана, которые, соединяясь, образуют массу больше критической. Для того чтобы вызвать взрыв бомбы, надо как можно быстрее сблизить их. Второй метод основан на использовании сходящегося внутрь взрыва. В этом случае поток газов от обычного взрывчатого вещества направлялся на расположенный внутри делящийся материал и сжимал его до тех пор, пока он не достигал критической массы. Соединение заряда и интенсивное облучение его нейтронами, как уже говорилось, вызывает цепную реакцию, в результате которой в первую же секунду температура возрастает до 1 миллиона градусов. За это время успевало разделиться всего около 5% критической массы. Остальная часть заряда в бомбах ранней конструкции испарялась без
всякой пользы.

Первая в истории атомная бомба (ей было дано имя «Тринити») была собрана летом 1945 года. А 16 июня 1945 года на атомном полигоне в пустыне Аламогордо (штат Нью-Мексико) был произведен первый на Земле атомный взрыв. Бомбу поместили в центре полигона на вершине стальной 30-метровой башни. Вокруг нее на большом расстоянии размещалась регистрирующая аппаратура. В 9 км находился наблюдательный пункт, а в 16 км - командный. На всех свидетелей этого события атомный взрыв произвел потрясающее впечатление. По описанию очевидцев, было такое ощущение, будто множество солнц соединилось в одно и разом осветило полигон. Затем над равниной возник огромный огненный шар и к нему медленно и зловеще стало подниматься круглое облако пыли и света.

Оторвавшись от земли, этот огненный шар за несколько секунд взлетел на высоту более трех километров. С каждым мгновением он разрастался в размерах, вскоре его диаметр достиг 1, 5 км, и он медленно поднялся в стратосферу. Затем огненный шар уступил место столбу клубящегося дыма, который вытянулся на высоту 12 км, приняв форму гигантского гриба. Все это сопровождалось ужасным грохотом, от которого дрожала земля. Мощность взорвавшейся бомбы превзошла все ожидания.

Как только позволила радиационная обстановка, несколько танков «Шерман», выложенные изнутри свинцовыми плитами, ринулись в район взрыва. На одном из них находился Ферми, которому не терпелось увидеть результаты своего труда. Его глазам предстала мертвая выжженная земля, на которой в радиусе 1, 5 км было уничтожено все живое. Песок спекся в стекловидную зеленоватую корку, покрывавшую землю. В огромной воронке лежали изуродованные остатки стальной опорной башни. Сила взрыва была оценена в 20000 тонн тротила.

Следующим шагом должно было стать боевое применение бомбы против Японии, которая после капитуляции фашистской Германии одна продолжала войну с США и их союзниками. Ракет-носителей тогда еще не было, поэтому бомбардировку предстояло осуществить с самолета. Компоненты двух бомб были с большой осторожностью доставлены крейсером «Индианаполис» на остров Тиниан, где базировалась 509-я сводная группа ВВС США. По типу заряда и конструкции эти бомбы несколько отличались друг от друга.

Первая бомба - «Малыш» - представляла собой крупногабаритную авиационную бомбу с атомным зарядом из сильно обогащенного урана-235. Длина ее была около 3 м, диаметр - 62 см, вес - 4, 1 т.

Вторая бомба - «Толстяк» - с зарядом плутония-239 имела яйцеобразную форму с крупногабаритным стабилизатором. Длина ее
составляла 3, 2 м, диаметр 1, 5 м, вес - 4, 5 т.

6 августа бомбардировщик Б-29 «Энола Гэй» полковника Тиббетса сбросил «Малыша» на крупный японский город Хиросиму. Бомба опускалась на парашюте и взорвалась, как это и было предусмотрено, на высоте 600 м от земли.

Последствия взрыва были ужасны. Даже на самих пилотов вид уничтоженного ими в одно мгновение мирного города произвел гнетущее впечатление. Позже один из них признался, что они видели в эту секунду самое плохое, что только может увидеть человек.

Для тех же, кто находился на земле, происходящее напоминало подлинный ад. Прежде всего, над Хиросимой прошла тепловая волна. Ее действие длилось всего несколько мгновений, но было настолько мощным, что расплавило даже черепицу и кристаллы кварца в гранитных плитах, превратило в уголь телефонные столбы на расстоянии 4 км и, наконец, настолько испепелило человеческие тела, что от них остались только тени на асфальте мостовых или на стенах домов. Затем из-под огненного шара вырвался чудовищный порыв ветра и промчался над городом со скоростью 800 км/ч, сметая все на своем пути. Не выдержавшие его яростного натиска дома рушились как подкошенные. В гигантском круге диаметром 4 км не осталось ни одного целого здания. Через несколько минут после взрыва над городом прошел черный радиоактивный дождь - это превращенная в пар влага сконденсировалась в высоких слоях атмосферы и выпала на землю в виде крупных капель, смешанных с радиоактивной пылью.

После дождя на город обрушился новый порыв ветра, на этот раз дувший в направлении эпицентра. Он был слабее первого, но все же достаточно силен, чтобы вырывать с корнем деревья. Ветер раздул гигантский пожар, в котором горело все, что только могло гореть. Из 76 тысяч зданий полностью разрушилось и сгорело 55 тысяч. Свидетели этой ужасной катастрофы вспоминали о людях-факелах, с которых сгоревшая одежда спадала на землю вместе с лохмотьями кожи, и о толпах обезумевших людей, покрытых ужасными ожогами, которые с криком метались по улицам. В воздухе стоял удушающий смрад от горелого человеческого мяса. Всюду валялись люди, мертвые и умирающие. Было много таких, которые ослепли и оглохли и, тычась во все стороны, не могли ничего разобрать в царившем вокруг хаосе.

Несчастные, находившиеся от эпицентра на расстоянии до 800 м, за доли секунды сгорели в буквальном смысле слова - их внутренности испарились, а тела превратились в комки дымящихся углей. Находившиеся от эпицентра на расстоянии 1 км, были поражены лучевой болезнью в крайне тяжелой форме. Уже через несколько часов у них началась сильнейшая рвота, температура подскочила до 39-40 градусов, появились одышка и кровотечения. Затем на коже высыпали незаживающие язвы, состав крови резко изменился, волосы выпали. После ужасных страданий, обычно на второй или третий день, наступала смерть.

Всего от взрыва и лучевой болезни погибло около 240 тысяч человек. Около 160 тысяч получили лучевую болезнь в более легкой форме - их мучительная смерть оказалась отсроченной на несколько месяцев или лет. Когда известие о катастрофе распространилось по стране, вся Япония была парализована страхом. Он еще увеличился, после того как 9 августа самолет «Бокс Кар» майора Суини сбросил вторую бомбу на Нагасаки. Здесь также погибло и было ранено несколько сот тысяч жителей. Не в силах противостоять новому оружию, японское правительство капитулировало - атомная бомба положила конец Второй мировой войне.

Война закончилась. Она продолжалась всего шесть лет, но успела изменить мир и людей почти до неузнаваемости.

Человеческая цивилизация до 1939 года и человеческая цивилизация после 1945 года разительно не похожи друг на друга. Тому есть много причин, но одна из важнейших - появление ядерного оружия. Можно без преувеличений сказать, что тень Хиросимы лежит на всей второй половине XX века. Она стала глубоким нравственным ожогом для многих миллионов людей, как бывших современниками этой катастрофы, так и родившихся через десятилетия после нее. Современный человек уже не может думать о мире так, как думали о нем до 6 августа 1945 года - он слишком ясно понимает, что этот мир может за несколько мгновений превратиться в ничто.

Современный человек не может смотреть на войну, так как смотрели его деды и прадеды - он достоверно знает, что эта война будет последней, и в ней не окажется ни победителей, ни побежденных. Ядерное оружие наложило свой отпечаток на все сферы общественной жизни, и современная цивилизация не может жить по тем же законам, что шестьдесят или восемьдесят лет назад. Никто не понимал этого лучше самих создателей атомной бомбы.

«Люди нашей планеты , - писал Роберт Оппенгеймер, - должны объединиться. Ужас и разрушение, посеянные последней войной, диктуют нам эту мысль. Взрывы атомных бомб доказали ее со всей жестокостью. Другие люди в другое время уже говорили подобные слова - только о другом оружии и о других войнах. Они не добились успеха. Но тот, кто и сегодня скажет, что эти слова бесполезны, введен в заблуждение превратностями истории. Нас нельзя убедить в этом. Результаты нашего труда не оставляют человечеству другого выбора, кроме как создать объединенный мир. Мир, основанный на законности и гуманизме».

«Я не самый простой человек, — заметил однажды американский физик Исидор Айзек Раби. — Но по сравнению с Оппенгеймером я весьма и весьма прост». Роберт Оппенгеймер был одной из центральных фигур ХХ века, сама «сложность» которого вобрала в себя политические и этические противоречия страны.

Во время Второй мировой войны блестящий физик Ажулиус Роберт Оппенгеймер возглавлял разработки американских ядерщиков по созданию первой в истории человечества атомной бомбы. Ученый вел уединенный и замкнутый образ жизни, и это породило подозрения в измене.

Атомное оружие — результат всего предшествующего развития науки и техники. Открытия, которые непосредственно связаны с его возникновением, были сделаны в конце XIX в. Огромную роль в раскрытии тайны атома сыграли исследования А. Беккереля, Пьера Кюри и Марии Склодовской-Кюри, Э. Резерфорда и др.

В начале 1939 года французский физик Жолио-Кюри сделал вывод, что возможна цепная реакция, которая приведет к взрыву чудовищной разрушительной силы и что уран может стать источником энергии, как обычное взрывное вещество. Это заключение стало толчком для разработок по созданию ядерного оружия.

Европа была накануне Второй мировой войны, и потенциальное обладание таким мощным оружием подталкивало милитаристские круги на быстрейшее его создание, но тормозом слала проблема наличия большого количества урановой руды для широкомасштабных исследований. Над созданием атомного оружия трудились физики Германии, Англии, США, Японии, понимая, что без достаточного количества урановой руды невозможно вести работы, США в сентябре 1940 года закупили большое количество требуемой руды по подставным документам у Бельгии, что и позволило им вести работы над созданием ядерного оружия полным ходом.

С 1939 по 1945, на проект Манхэттен было потрачено более двух биллионов долларов. В Oak Ridge, штат Теннеси, был построен огромный завод по очистке урана. H.C. Urey и Ernest O. Lawrence (изобретатель циклотрона) предложили способ очистки, основанный на принципе газовой диффузии с последующим магнитным разделением двух изотопов. Газовая центрифуга отделяла легкий Уран-235 от более тяжелого Урана-238.

На территории Соединенных Штатов, в Лос-Аламосе, в пустынных просторах штата Нью-Мексико, в 1942 году был создан американский ядерный центр. Над проектом работало множество учёных, главным же был Роберт Оппенгеймер. Под его началом были собраны лучшие умы того времени не только США и Англии, но практически всей Западной Европы. Над созданием ядерного оружия трудился огромный коллектив, включая 12 лауреатов Нобелевской премии. Работа в Лос-Аламосе, где находилась лаборатория, не прекращалась ни на минуту. В Европе тем временем шла Вторая мировая война, и Германия проводила массовые бомбардировки городов Англии, что подвергало опасности английский атомный проект “Tub Alloys”, и Англия добровольно передала США свои разработки и ведущих ученых проекта, что позволило США занять ведущее положение в развитии ядерной физики (создания ядерного оружия).

«Отец атомной бомбы», он в то же время был ярым противником американской ядерной политики. Нося звание одного из самых выдающихся физиков своего времени, с удовольствием изучал мистицизм древних индийских книг. Коммунист, путешественник и убежденный американский патриот, очень духовный человек, он, тем не менее, был готов предать своих друзей, чтобы защититься от нападков антикоммунистов. Ученый, разработавший план причинения наибольшего ущерба Хиросиме и Нагасаки, проклинал себя за «невинную кровь на своих руках».

Писать об этом противоречивом человеке задача непростая, но интересная, и ХХ век отмечен рядом книг о нем. Однако насыщенная жизнь ученого продолжает привлекать биографов.

Оппенгеймер родился в Нью-Йорке в 1903 году в семье обеспеченных и образованных евреев. Оппенгеймер воспитывался в любви к живописи, музыке, в атмосфере интеллектуальной любознательности. В 1922 году он поступил в Гарвардский университет и всего за три года получил диплом с отличием, его основным предметом была химия. В последующие несколько лет не по годам развитой молодой человек побывал в нескольких странах Европы, где работал с физиками, занимавшимися проблемами исследований атомных явлений в свете новых теорий. Всего через год после окончания университета Оппенгеймер опубликовал научную работу, которая показала, насколько глубоко он разбирается в новых методах. Вскоре он, совместно со знаменитым Максом Борном, разработал важнейшую часть квантовой теории, известную под названием метода Борна-Оппенгеймера. В 1927 году его выдающаяся докторская диссертация принесла ему всемирную славу.

В 1928 работал в Цюрихском и Лейденском университетах. В том же году возвратился в США. С 1929 по 1947 Оппенгеймер преподавал в Калифорнийском университете и Калифорнийском технологическом институте. С 1939 по 1945 активно участвовал в работах по созданию атомной бомбы в рамках Манхэттенского проекта; возглавляя специально созданную для этого Лос-Аламосскую лабораторию.

В 1929 году Оппенгеймер, восходящая звезда науки, принял предложения двух из нескольких боровшихся за право пригласить его университетов. Весенний семестр он преподавал в оживленном, молодом Калифорнийском технологическом институте в Пасадене, а осенний и зимний - в Калифорнийском университете в Беркли, где он стал первым преподавателем квантовой механики. По сути дела, ученому-эрудиту пришлось какое-то время приспосабливаться, постепенно снижая уровень обсуждения до возможностей своих студентов. В 1936 году он влюбился в Джин Тэтлок, беспокойную и подверженную переменам настроения молодую женщину, чей страстный идеализм нашел выход в коммунистической деятельности. Как многие думающие люди того времени, Оппенгеймер изучал идеи левого движения в качестве одной из возможных альтернатив, хотя и не вступал в компартию, что сделали его младший брат, невестка и многие из его друзей. Его интерес к политике, как и умение читать на санскрите, был естественным результатом постоянного стремления к знаниям. По его собственным словам, он был также глубоко встревожен взрывом антисемитизма в фашистской Германии и Испании и вкладывал по 1000 долларов в год из своего ежегодного заработка в 15 000 долларов в проекты, связанные с деятельностью коммунистических групп. После встречи с Китти Харрисон, ставшей в 1940 году его женой, Оппенгеймер расстался с Джин Тэтлок и отошел от круга ее друзей с левыми убеждениями.

В 1939 году Соединенные Штаты узнали, что в рамках подготовки к глобальной войне гитлеровская Германия открыла расщепление атомного ядра. Оппенгеймер и другие ученые сразу же догадались, что немецкие физики попытаются получить управляемую цепную реакцию, которая могла стать ключом с созданию оружия, гораздо более разрушительного, чем любое существовавшее на тот момент. Заручившись поддержкой великого научного гения, Альберта Эйнштейна, обеспокоенные ученые в своем знаменитом письме предупредили Президента Франклина Д. Рузвельта об опасности. Санкционируя финансирование проектов, направленных на создание неиспытанного оружия, президент действовал в обстановке строгой секретности. По иронии судьбы, совместно с американскими учеными в лабораториях, разбросанных по всей стране, работали многие ведущие ученые мира, вынужденные бежать со своей родины. Одна часть университетских групп исследовала возможность создания ядерного реактора, другие взялись за решение проблемы отделения изотопов урана, необходимых для высвобождения энергии в цепной реакции. Оппенгеймеру, который до этого был занят теоретическими проблемами, предложили заняться организацией широкого фронта работ только в начале 1942 года.

Программа армии США по созданию атомной бомбы получила кодовое название «Проект Манхэттен», ее возглавил 46-летний полковник Лесли Р. Гровс, профессиональный военный. Гровс, который характеризовал ученых, работавших над созданием атомной бомбы, как «дорогостоящее сборище чокнутых», однако, признавал, что Оппенгеймер обладал способностью, до тех пор не востребованной, управлять своими коллегами-спорщиками, когда накалялась атмосфера. Физик предложил, чтобы всех ученых объединили в одной лаборатории в тихом провинциальном городке Лос-Аламос, штат Нью-Мексико, в районе, который он хорошо знал. К марту 1943 года закрытый пансион для мальчиков был превращен в строго охраняемый секретный центр, научным директором которого стал Оппенгеймер. Настояв на свободном обмене информацией между учеными, которым строго-настрого запрещалось покидать пределы центра, Оппенгеймер создал атмосферу доверия и взаимного уважения, что способствовало удивительным успехам в работе. Не щадя себя, он оставался руководителем всех направлений этого сложного проекта, хотя от этого сильно пострадала его личная жизнь. Но для смешанной группы ученых - среди которых было больше десятка тогдашних или будущих нобелевских лауреатов и из которых редкий человек не обладал ярко выраженной индивидуальностью -Оппенгеймер был необыкновенно преданным делу руководителем и тонким дипломатом. Большинство из них согласились бы, что львиная доля заслуги в окончательном успехе проекта принадлежит ему. К 30 декабря 1944 года Гровс, ставший к тому времени генералом, мог с уверенностью сказать, что на затраченные два миллиарда долларов будет создана готовая к действию бомба к 1 августа следующего года. Но когда в мае 1945 года Германия признала свое поражение, многие из работавших в Лос-Аламосе исследователей стали задумываться об использовании нового оружия. Ведь, вероятно, Япония вскоре капитулировала бы и без атомной бомбардировки. Нужно ли Соединенным Штатам становиться первой в мире страной, применившей такое ужасное устройство? Гарри С. Трумэн, ставший президентом после смерти Рузвельта, назначил комитет для изучения возможных последствий использования атомной бомбы, в который вошел и Оппенгеймер. Специалисты решили рекомендовать сбросить атомную бомбу без предупреждения на крупный японский военный объект. Было получено и согласие Оппенгеймера.

Все эти тревоги были бы, конечно, спорными, если бы бомба не сработала. Испытание первой в мире атомной бомбы было проведено 16 июля 1945 года примерно в 80 километрах от авиационной базы в Аламогордо, штат Нью-Мексико. Испытываемое устройство, названное за его выпуклую форму «Толстяком», прикрепили к стальной вышке, установленной в пустынной местности. Ровно в 5.30 утра детонатор с дистанционным управлением привел бомбу в действие. С отдающимся эхом грохотом на участке диаметром в 1,6 километра в небо взметнулся гигантский фиолетово-зелено-оранжевый огненный шар. Земля содрогнулась от взрыва, вышка исчезла. К небу стремительно поднялся белый столб дыма и стал постепенно расширяться, принимая на высоте около 11 километров устрашающую форму гриба. Первый ядерный взрыв поразил научных и военных наблюдателей, находившихся рядом с местом испытания, и вскружил им головы. Но Оппенгеймеру вспомнились строки из индийской эпической поэмы «Бхагавадгита»: «Я стану Смертью, истребителем миров». До конца его жизни к удовлетворению от научных успехов всегда примешивалось чувство ответственности за последствия.

Утром 6 августа 1945 г. над Хиросимой было ясное, безоблачное небо. Как и прежде, приближение с востока двух американских самолета (один из них назывался Энола Гей) на высоте 10-13 км не вызвало тревоги (т.к. каждый день они показывались в небе Хиросимы). Один из самолетов спикировал и что-то сбросил, а затем оба самолета повернули и улетели. Сброшенный предмет на парашюте медленно спускался и вдруг на высоте 600 м над землей взорвался. Это была бомба "Малыш".

Через три дня после того, как «Малыш» был взорван в Хиросиме, точная копия первого «Толстяка» была сброшена на город Нагасаки. 15 августа Япония, чья решимость была окончательно сломлена этим новым оружием, подписала безоговорочную капитуляцию. Однако уже стали слышны голоса скептиков, и сам Оппенгеймер предсказал через два месяца после Хиросимы, что «человечество проклянет названия Лос-Аламос и Хиросима».

Весь мир был шокирован взрывами в Хиросиме и Нагасаки. Что характерно, Оппенгеймеру удалось сочетать в себе переживания по поводу испытания бомбы на мирных гражданах и радости, что оружие наконец-то проверено.

Тем не менее на следующий год он принял назначение на пост председателя научного совета Комиссии по атомной энергии (КАЭ), став тем самым наиболее влиятельным советником правительства и военных по ядерным проблемам. Пока Запад и возглавляемый Сталиным Советский Союз всерьез готовились к холодной войне, каждая из сторон сосредоточила свое внимание на гонке вооружений. Хотя многие из ученых, входивших в «Проект Манхэттен», не поддерживали идею создания нового оружия, бывшие сотрудники Оппенгеймера Эдвард Теллер и Эрнест Лоуренс посчитали, что национальная безопасность США требует скорейшей разработки водородной бомбы. Оппенгеймер пришел в ужас. С его точки зрения, две ядерные державы и так уже противостояли друг другу, как «два скорпиона в банке, каждый в состоянии убить другого, но только с риском для собственной жизни». С распространением нового оружия в войнах больше не было бы победителей и побежденных - только жертвы. И «отец атомной бомбы» сделал публичное заявление, что он против разработки водородной бомбы. Всегда чувствовавший себя при Оппенгеймере не в своей тарелке и явно завидовавший его достижениям, Теллер стал прилагать усилия, чтобы возглавить новый проект, подразумевая, что Оппенгеймер больше не должен принимать участие в работе. Он рассказал следователям ФБР, что его соперник своим авторитетом удерживает ученых от работы над водородной бомбой, и открыл секрет, что в молодости Оппенгеймер страдал приступами сильной депрессии. Когда Президент Трумэн дал в 1950 году согласие на финансирование работ по созданию водородной бомбы, Теллер мог праздновать победу.

В 1954 году враги Оппенгеймера развернули кампанию по его удалению от власти, что им удалось — после занявших месяц поисков "черных пятен" в его личной биографии. В результате было организовано показное дело, в котором против Оппенгеймера выступали многие влиятельные политические и научные деятели. Как позже высказался по этому поводу Альберт Эйнштейн: «Проблема Оппенгеймера заключалась в том, что он любил женщину, которая не любила его: правительство США».

Позволив расцвести таланту Оппенгеймера, Америка обрекла его на погибель.


Оппенгеймер известен не только как создатель американской атомной бомбы. Ему принадлежат многие работы по квантовой механике, теории относительности, физике элементарных частиц, теоретической астрофизике. В 1927 он разработал теорию взаимодействия свободных электронов с атомами. Совместно с Борном создал теорию строения двухатомных молекул. В 1931 он и П.Эренфест сформулировали теорему, применение которой к ядру азота показало, что протонно-электронная гипотеза строения ядер приводит к ряду противоречий с известными свойствами азота. Исследовал внутреннюю конверсию g -лучей. В 1937 разработал каскадную теорию космических ливней, в 1938 сделал первый расчет модели нейтронной звезды, в 1939 предсказал существование «черных дыр».

Оппенгеймеру принадлежит ряд популярных книг, в том числе - Наука и обыденное познание (Science and the Common Understanding , 1954), Открытый разум (The Open Mind , 1955), Некоторые размышления о науке и культуре (Some Reflections on Science and Culture , 1960). Умер Оппенгеймер в Принстоне 18 февраля 1967.

Работы над атомными проектами в СССР и США начались одновременно. В августе 1942 года в одном из зданий во дворе Казанского университета начала работать секретная «Лаборатория №2». Её руководителем был назначен Игорь Курчатов.

В советские времена утверждалось, что СССР решил свою атомную задачу совершенно самостоятельно, а Курчатов считался «отцом» отечественной атомной бомбы. Хотя и ходили слухи о некоторых украденных у американцев секретах. И только в 90-х годах, спустя 50 лет, один из главных действующих тогда лиц - Юлий Харитон рассказал о существенной роли разведки в ускорении отставшего советского проекта. А американские научные и технические результаты добывал приехавший в английской группе Клаус Фукс.

Информация из-за рубежа помогла руководству страны принять трудное решение - начать работы по ядерному оружию в ходе тяжелейшей войны. Разведка позволила нашим физикам сэкономить время, помогла избежать "осечки" при первом атомном испытании, имевшем огромное политическое значение.

В 1939 году была открыта цепная реакция деления ядер урана-235, сопровождающаяся выделением колоссальной энергии. Вскоре после этого со страниц научных журналов начали исчезать статьи по ядерной физике. Это могло свидетельствовать о реальной перспективе создания атомного взрывчатого вещества и оружия на его основе.

После открытия советскими физиками спонтанного деления ядер урана-235 и определения критической массы в резидентуру по инициативе начальника НТР

Л. Квасникова была разослана соответствующая директива.

В ФСБ России (бывший КГБ СССР) под грифом "хранить вечно" покоятся 17 томов архивного дела N 13676, где документально зафиксировано, кто и как привлекал граждан США к работе на советскую разведку. Лишь немногие из высшего руководства КГБ СССР имели доступ к материалам этого дела, гриф секретности с которого снят лишь недавно. Первые сведения о работах по созданию американской атомной бомбы советская разведка получила осенью 1941 года. А уже в марте 1942 года обширная информация о ведущихся в США и Англии исследованиях легла на стол И. В. Сталина. По словам Ю. Б. Харитона, в тот драматический период надежнее было использовать для первого нашего взрыва уже испытанную американцами схему бомбы. "Учитывая государственные интересы, любое другое решение было тогда недопустимым. Заслуга Фукса и других наших помощников за рубежом несомненна. Однако мы реализовали американскую схему при первом испытании не столько из технических, сколько из политических соображений.

Сообщение о том, что Советский Союз овладел секретом ядерного оружия вызвало у правящих кругов США желание как можно быстрее развязать превентивную войну. Был разработан план "Тройан", в котором предусматривалось начать боевые действия 1 января 1950 года. На то время США располагало 840 стратегическими бомбардировщиками в строевых частях, 1350 - в резерве и свыше 300 атомными бомбами.

В районе г. Семипалатинска был построен испытательный полигон. Ровно в 7.00 утра 29 августа 1949 года на этом полигоне было подорвано первое советское ядерное устройство под кодовым названием "РДС-1".

План "Тройан", согласно которому на 70 городов СССР должны были быть сброшены атомные бомбы, был сорван из-за угрозы ответного удара. Событие, происшедшее на Семипалатинском полигоне, известило мир о создании в СССР ядерного оружия.

Внешняя разведка не только привлекла внимание руководства страны к проблеме создания на Западе атомного оружия и тем самым инициировала проведение подобных работ в нашей стране. Благодаря информации внешней разведки, по признанию академиков А.Александрова, Ю.Харитона и других, И.Курчатов не сделал больших ошибок, нам удалось избежать тупиковых направлений в создании атомного оружия и создать в более короткие сроки атомную бомбу в СССР, всего за три года, тогда как США на это потратили четыре года, израсходовав на ее создание пять миллиардов долларов.

Как отметил академик Ю.Харитон в интервью газете "Известия" от 8 декабря 1992 г., первый советский атомный заряд был изготовлен по американскому образцу с помощью сведений, полученных от К.Фукса. По словам академика, когда вручались правительственные награды участникам советского атомного проекта, Сталин, удовлетворенный тем, что американской монополии в этой области не существует, заметил: "Если бы мы опоздали на один-полтора года, то, наверное, испробовали бы этот заряд на себе".

Третий рейх Булавина Виктория Викторовна

Кто же изобрел ядерную бомбу?

Кто же изобрел ядерную бомбу?

Нацистская партия всегда признавала большое значение технологий и вкладывала огромные средства в разработку ракет, самолетов и танков. Но самое выдающееся и опасное открытие было сделано в области ядерной физики. Германия была в 1930-х годах, пожалуй, лидером в ядерной физике. Однако с приходом к власти нацистов, многие немецкие физики, которые были евреями, покинули Третий рейх. Некоторые из них эмигрировали в США, принеся с собой тревожные вести: Германия, возможно, работает над созданием атомной бомбы. Эти вести побудили Пентагон принять меры по разработке своей собственной атомной программы, которую назвали «Манхэттенский проект»…

Интересную, но более чем сомнительную версию о «секретном оружии Третьего рейха» предложил Ганс Ульрих фон Кранц. В его книге «Тайное оружие Третьего рейха» выдвигается версия о том, что атомная бомба была создана в Германии и что США только сымитировали результаты «Манхеттенского проекта». Но расскажем об этом подробнее.

Отто Ган, знаменитый немецкий физик и радиохимик, совместно с другим крупным ученым Фрицем Штраусманом открыл в 1938 году деление уранового ядра, фактически дав этим старт работам по созданию ядерного оружия. В 1938 году атомные разработки не были засекречены, но практически ни в одной стране, кроме Германии, им не уделялось должного внимания. В них не видели особого смысла. Премьер-министр Великобритании Невилл Чемберлен утверждал: «Эта отвлеченная материя не имеет никакого отношения к государственным нуждам». Состояние ядерных исследований в Соединенных Штатах Америки профессор Ган оценивал так: «Если говорить о стране, в которой процессам деления ядра уделяется наименьшее внимание, то следует, несомненно, назвать США. Разумеется, сейчас я не рассматриваю Бразилию или Ватикан. Однако среди развитых стран даже Италия и коммунистическая Россия значительно опережают США». Также он отмечал, что проблемам теоретической физики по ту сторону океана уделяется вообще мало внимания, приоритет отдается прикладным разработкам, которые могут дать немедленную прибыль. Вердикт Гана был однозначным: «Я могу с уверенностью утверждать, что в течение ближайшего десятилетия североамериканцы не смогут сделать что-либо существенное для развития атомной физики». Это утверждение и послужило основанием для построения гипотезы фон Кранца. Рассмотрим его версию.

В это же время была создана группа «Алсос», деятельность которой сводилась к «охоте за головами» и поиску секретов атомных исследований Германии. Тут возникает закономерный вопрос: к чему американцам искать чужие секреты, если собственный проект идет полным ходом? Почему они так рассчитывали на чужие исследования?

Весной 1945 года, благодаря деятельности «Алсос», в руки американцев попали многие ученые, которые принимали участие в немецких ядерных исследованиях. К маю у них оказались и Гейзенберг, и Ган, и Озенберг, и Дибнер, и многие другие выдающиеся немецкие физики. Но группа «Алсос» продолжала активные поиски в уже побежденной Германии - до самого конца мая. И только когда все крупные ученые были отправлены в Америку, «Алсос» прекратил свою деятельность. И в конце июня американцы проводят испытания атомной бомбы, как утверждается, впервые в мире. А в начале августа сбрасывают две бомбы на японские города. Ганс Ульрих фон Кранц обратил внимание на эти совпадения.

Сомнения у исследователя вызывает и то, что между испытаниями и боевым применением нового супероружия прошел всего месяц, ведь изготовление ядерной бомбы невозможно в столь короткий срок! После Хиросимы и Нагасаки следующие бомбы в США появились на вооружении только в 1947 году, чему предшествовали дополнительные испытания в Эль-Пасо в 1946 году. Это наводит на мысль, что мы имеем дело с тщательно скрываемой правдой, так как получается, что в 1945 году американцы сбрасывают три бомбы - и все успешно. Следующие испытания - таких же самых бомб - проходят полтора года спустя, причем не слишком удачно (не взорвались три бомбы из четырех). Серийное производство началось еще через полгода, и неизвестно, насколько атомные бомбы, появившиеся на американских армейских складах, соответствовали своему страшному назначению. Это и навело исследователя на мысль, что «первые три атомные бомбы - те самые, сорок пятого года - были построены американцами не самостоятельно, а получены от кого-то. Если говорить прямо - от немцев. Косвенно такую гипотезу подтверждает реакция немецких ученых на бомбардировку японских городов, о которой мы знаем благодаря книге Дэвида Ирвинга». По мнению исследователя, атомный проект Третьего рейха контролировало «Аненербе», которое находилось в личном подчинении вождя СС Генриха Гиммлера. По мнению Ганса Ульрих фон Кранца, «ядерный заряд - лучший инструмент послевоенного геноцида, считали и Гитлер, и Гиммлер». Согласно данным исследователя, 3 марта 1944 года атомная бомба (объект «Локи») была доставлена на место испытаний - в болотистые леса Белоруссии. Испытания прошли успешно и вызвали небывалый энтузиазм в руководстве Третьего рейха. Германская пропаганда и раньше упоминала о «чудо-оружии» гигантской разрушительной силы, которое скоро получит вермахт, теперь эти мотивы зазвучали еще громче. Обычно их считают блефом, однако можем ли мы однозначно сделать такой вывод? Как правило, нацистская пропаганда не блефовала, она лишь приукрашивала действительность. Уличить ее в крупной лжи по вопросам «чудо-оружия» пока не удавалось. Вспомним, пропаганда обещала реактивные истребители - самые быстрые в мире. И уже в конце 1944 года сотни «Мессершмиттов-262» патрулировали воздушное пространство рейха. Пропаганда сулила врагам ракетный дождь, и с осени того же года десятки крылатых ракет Фау ежедневно обрушивались на английские города. Так с какой стати считать блефом обещанное суперразрушительное оружие?

С весны 1944 года начались лихорадочная подговка к серийному производству ядерных боеприпасов. Но почему же эти бомбы не применили? Фон Кранц дает такой ответ - не было носителя, а когда появился транспортный самолет «Юнкерс-390», рейх поджидало предательство, к тому же и эти бомбы уже не могли решить исход войны…

Насколько правдоподобна эта версия? Действительно ли именно немцы первыми разработали атомную бомбу? Сказать сложно, но исключать такую возможность не следует, ведь, как мы знаем, именно немецкие специалисты были еще в начале 1940-х годов лидерами в атомных исследованиях.

Несмотря на то, что множество историков занимаются исследованием тайн Третьего рейха, ибо стали доступными многие секретные документы, похоже, что и сегодня архивы с материалами о военных разработках Германии надежно хранят множество загадок.

автора

Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

Из книги 100 великих загадок XX века автора

ТАК КТО ЖЕ ИЗОБРЕЛ МИНОМЕТ? (Материал М. Чекурова)Большая Советская энциклопедия 2-го издания (1954) утверждает, что «идею создания миномета успешно реализовал мичман С.Н. Власьев, активный участник обороны Порт-Артура». Однако в статье, посвященной миномету, этот же источник

Из книги Великая контрибуция. Что СССР получил после войны автора Широкорад Александр Борисович

Глава 21 КАК ЛАВРЕНТИЙ БЕРИЯ ЗАСТАВИЛ НЕМЦЕВ ДЕЛАТЬ БОМБУ ДЛЯ СТАЛИНА В течение почти шестидесяти послевоенных лет считалось, что немцы были крайне далеки от создания атомного оружия. Но вот в марте 2005 г. в издательстве «Deutsche Verlags-Anstalt» вышла книга немецкого историка

Из книги Боги денег. Уолл-стрит и смерть Американского века автора Энгдаль Уильям Фредерик

Из книги Северная Корея. Эпоха Ким Чен Ира на закате автора Панин А

9. Ставка на ядерную бомбу Ким Ир Сен понимал, что бесконечно процесс отторжения Южной Кореи со стороны СССР, КНР, других социалистических стран продолжаться не может. На каком-то этапе союзники Северной Кореи пойдут на официализацию связей с РК, которая все более

Из книги Сценарий для третьей мировой войны: Как Израиль чуть не стал ее причиной [Л] автора Гриневский Олег Алексеевич

Глава пятая Кто дал Саддаму Хусейну атомную бомбу? Советский Союз был первым, кто начал сотрудничать с Ираком в области ядерной энергии. Но не он вложил в железные руки Саддама атомную бомбу.17 августа 1959 года правительства СССР и Ирака подписали соглашение, которое

Из книги За порогом Победы автора Мартиросян Арсен Беникович

Миф № 15. Если бы не советская разведка, то в СССР не смогли бы создать атомную бомбу. Спекуляции на эту тему периодически «всплывают» в антисталинский мифологии, как правило, в целях оскорбления либо разведки, либо советской науки, а нередко и тех и других одновременно. Ну

Из книги Величайшие загадки XX века автора Непомнящий Николай Николаевич

ТАК КТО ЖЕ ИЗОБРЕЛ МИНОМЕТ? Большая Советская энциклопедия (1954) утверждает, что «идею создания миномета успешно реализовал мичман С. Н. Власьев, активный участник обороны Порт–Артура». Однако в статье, посвященной миномету, этот же источник констатировал, что «Власьев

Из книги Русские гусли. История и мифология автора Базлов Григорий Николаевич

Из книги Два лица Востока [Впечатления и размышления от одиннадцати лет работы в Китае и семи лет в Японии] автора Овчинников Всеволод Владимирович

Москва призывала предотвратить ядерную гонку Словом, архивы первых послевоенных лет достаточно красноречивы. Тем более что в мировой летописи значатся и события диаметрально противоположной направленности. 19 июня 1946 года Советский Союз внес проект «Международной

Из книги В поисках затерянного мира (Атлантида) автора Андреева Екатерина Владимировна

Кто бросил бомбу? Последние слова докладчика потонули в буре криков возмущения, аплодисментов, смеха и свистков. На кафедру взбежал взволнованный человек и, взмахивая руками, яростно закричал:- Ни одна культура не может быть праматерью всех культур! Это возмутительная

Из книги Всемирная история в лицах автора Фортунатов Владимир Валентинович

1.6.7. Как Цай Лунь изобрел бумагу Китайцы на протяжении нескольких тысяч лет считали варварскими все остальные страны. Китай является родиной многих великих изобретений. Бумагу придумали именно здесь.До ее появления для записей в Китае использовали скрученные в свитки