Самодельный пластик для 3д принтера. Домашнее производство прутка или экономика должна быть экономной. Какой хотенд выбрать

Самодельный пластик для 3д принтера. Домашнее производство прутка или экономика должна быть экономной. Какой хотенд выбрать

http://habrastorage.org/files/e4a/1b7/d89/e4a1b7d89dd94c3ca48ccb0c50a27765.jpg

http://habrastorage.org/files/48d/d9c/1d1/48dd9c1d17334f138d1223a9b05f8d7a.jpg

Немного теории:

Полилакти́д (ПЛА, PLA) - биоразлагаемый, биосовместимый, термопластичный, алифатический полиэфир, мономером которого является молочная кислота. Сырьем для производства служат ежегодно возобновляемые ресурсы, такие как кукуруза и сахарный тростник. Используется для производства изделий с коротким сроком службы (пищевая упаковка, одноразовая посуда, пакеты, различная тара), а также в медицине, для производства хирургических нитей и штифтов.

http://habrastorage.org/getpro/habr/post_images/ebc/8be/e96/ebc8bee96df9e7884aa8556846a02aee.jpg

Панорама цеха:

http://habrastorage.org/files/e2f/369/b7c/e2f369b7c5cb4907a655f0c374f88430.jpg

http://habrastorage.org/files/bcf/70e/85b/bcf70e85b72a4700ac89bf111cfd286a.jpg

http://habrastorage.org/files/f53/1ed/b26/f531edb269314a5c8d9460e6bec7263b.jpg

http://habrastorage.org/files/ee5/c3c/fa2/ee5c3cfa2836401c86841c6c276aeba6.jpg

http://habrastorage.org/files/493/d42/0c0/493d420c09664be9a365278832e7788c.jpg

Как выглядит сам процесс производства:

http://habrastorage.org/files/fca/e28/da7/fcae28da71c34e7a9f396be6395b9c95.jpg

ПЛА-пластик производят из кукурузы или сахарного тростника. Сырьем для получения служат также картофельный и кукурузный крахмал, соевый белок, крупа из клубней маниока, целлюлоза.

При переработке вышеупомянутых растений получают пластиковые шарики, которые укладывают в коробки и отправляют на дальнейшие циклы производства:

http://habrastorage.org/files/817/fe1/e1a/817fe1e1acc649acbf499520da9266ff.jpg

Из тонны сырья получается около 900 кг пластика

http://habrastorage.org/files/4f1/fcd/138/4f1fcd1388fd45baac40bf034386db7d.jpg

PLA-пластик побаивается света и влаги, поэтому его упаковывают в герметичные мешки в которых есть силикагель.

http://habrastorage.org/files/8ff/58d/86a/8ff58d86af2940ca8009fd10a7c32b5c.jpg

А это «пылесос», которым зачерпывают 100 кг «кукурузных шариков» и отправляют в контейнер

http://habrastorage.org/files/012/b79/2fc/012b792fce424b6a9f0f455c7836a6e7.jpg

Здесь сырье сушится, при этом запах стоит как в кондитерской

Добавляем «щепотку» красителя (тоже полностью натуральный, австрийское качество)

http://habrastorage.org/files/865/9cb/fd4/8659cbfd46b546049a379ecefba5623e.jpg

http://habrastorage.org/files/742/eb0/668/742eb06683fe4e778e0057fbc3a6a1ef.jpg

http://habrastorage.org/files/f5d/dab/b83/f5ddabb83a744f7082517a4d9c49da13.jpg

Здесь сырье разогревается и превращается в вязкую массу.

Под давление вала пропускаем сквозь нагревательные элементы.

Диаметр выходного отверстия «топки» около 3 мм, пластик приобретает нужный диаметр (1,75 мм) за счет того, что его тут же тянут, причем тяга очень точно настраивается

http://habrastorage.org/files/dd8/6ed/6ca/dd86ed6ca4c14b77a3ff0b9c6be9d254.jpg

Ванна для охлаждения. Для ABS и PLA разные температуры

http://habrastorage.org/files/596/1d3/fc9/5961d3fc9fa6499fa5bf0f0b325f99fd.jpg

Диаметр остывшего пластика измеряется лазерным прибором. Установлена допустимая погрешность диаметра нити ±0,03 мм

http://habrastorage.org/files/16e/baf/f9a/16ebaff9ab1d48a6bac10012e02ae0d1.jpg

Дистанционный мониторинг диаметра пластика

Cкорость протяжки нити через лазер 55 метров в минуту

http://habrastorage.org/files/c0f/21f/d40/c0f21fd4007d4659bf81bc417c2a84ae.jpg

Управление тягой. Именно тяга создает нужный диаметр. При помощи этого узла можно очень точно подбирать тягу моторов и тем самым регулировать диаметр пластика.

http://habrastorage.org/files/630/a71/f80/630a71f808a04e6081b45bec6a0cc967.jpg

«Веретено» - управляет скоростью наматывания на катушку. Нет на КАТУШКУ.

http://habrastorage.org/files/4a2/212/86b/4a221286b91b45f6b018a94b1c100f65.jpg

Вот это - КАТУШКА.

Без пластика

http://habrastorage.org/files/dfc/8f5/23a/dfc8f523a9c94e06888912d853bb48d9.jpg

Важно отметить равномерность заполнения катушки

После того как большая катушка заполнится, ее снимают и перематывают нить на маленькие (привычные для всех) катушки.

Обычные катушки попадают в заботливые руки девушки, которая комплектует коробку

http://habrastorage.org/files/179/84c/8ea/17984c8ea7bb4e138062bed89e57fad2.jpg

Пакетик, защищающий от пыли, силикагель, защищающий от влаги, плотная коробка, защищающая от прямых солнечных лучей и наклейки. На наклейках указаны рекомендуемая температура плавления (для ABS и PLA они разные), диаметр нити, вес и материал.

http://habrastorage.org/files/057/c5c/c2f/057c5cc2f42340089cecc2dcc549b233.jpg

Отсюда они отправятся по всей Москве и странам СНГ

http://habrastorage.org/files/2cc/43b/b9d/2cc43bb9d30c4d8593fa8fbb765048bc.jpg

В цеху очень чисто, приняты все меры, чтобы было как можно меньше пыли: заклеены скотчем окна, часто делается уборка, используется жидкость-антистатик, особо важные места укрываются полиэтиленом.

http://habrastorage.org/files/a43/667/880/a4366788008f4a93bc943a126981d5cf.jpg

Пара советов как выбрать хороший пластик.

PLA очень чувствителен к режиму хранения (в темноте, сухости и без пыли). Прутик должен быть чистый без вкраплений, ровный, без отслоений, на поверхности - лёгкий блеск.

http://habrastorage.org/files/862/464/af2/862464af22094d4dbd8f96c59b437b99.jpg

Наличие инородных тел проверяется в месте разрыва. Если поднатужиться и разорвать кусочек пластика (а рвется там где «тонко»), то место разрыва должно быть однородным - это признак хорошего качества.

Долговечность/биоразалагаемость

http://habrastorage.org/getpro/habr/post_images/160/c28/b8a/160c28b8aee21019cf21328ea1760815.jpg

(картинка для инвесторов-экологов)

а вот данные похожие на правду

http://habrastorage.org/files/5c3/8d7/899/5c38d78991a240c2915fa1fdcdd84091.jpg

примеры из PLA

http://habrastorage.org/getpro/habr/post_images/ae0/e36/db6/ae0e36db66f5409756b7f430812cb1da.jpg

http://habrastorage.org/getpro/habr/post_images/da5/6f8/866/da56f88660badccaa6bc6b84c63be339.jpg

В настоящее время самая доступная цена на пластиковую нить для 3D принтеров составляет более 20$ за 1 кг, стоимость филамента от надежных производителей или с какими-либо особенными характеристиками (цвет, добавки) достигает 50$.

Таким образом, при печати 3D моделей, снижение расхода материала и его стоимости становятся ключевыми факторами повышения экономичности и, соответственно, доходности 3D печати.

Экструдер Лимана

Первым публичным шагом к этому стало объявленное в марте 2013 года изобретение с открытым источником – экструдер для самостоятельного создания пластиковой нити для 3D принтеров. Изобретатель Хью Лиман представил свою машину на конкурс и выиграл главный приз от фонда Кауфмана и Maker Faire. Одним из главных условий конкурса была цена устройства – не более 250$. Победивший экструдер позволяет выдавливать нить диаметром 1,75 или 3 мм с погрешностью в 0,01мм, причем это был уже второй вариант представленного устройства, первый не прошел по цене. Изобретение Лимана с открытым исходным кодом, что позволяет любому использовать и строить его.

С помощью самодельного экструдера, вы сможете экономить до 80%. Качественный филамент стоит около 50$ за 1 кг, тогда как покупка килограмма гранул обойдется только в 10$. А если вы покупаете упаковку гранул в 25 кг, то каждый килограмм обойдется всего в 5$.

Экструдер Фишера

Вдохновленный экструдером Лимана, Бен Фишлер из Сан-Диего (Калифорния) решил попробовать создать простую в использовании версию для пользователей. STRUdittle является ультра-компактным устройством и может делать нити из ABS пластика со скоростью экструзии 30-60 см в мин.

Точность на экструдере достаточно высокая:

  • Погрешность 0,05 мм при свободном выводе филамента;
  • Погрешность 0,03 мм при использовании автоматически сматывающей готовую нить катушки.

Проект Фишлера запущен на Kickstarter для того, чтобы сделать этот продукт доступным для масс. Необходимые средства уже собраны, и комплектное устройство предлагается участникам со финансирования по 385$. Причем, кроме полного комплекта, уже имеющим подобный экструдер также предлагается отдельно только механизм для автоматического сматывания филамента за 100$. А само устройство поставляется с размерами сопла по выбору заказчика, в том числе вообще без него – для изготовления материалов нестандартных размеров.

Продолжим на тему того, каким образом филамент подается в зону плавления (HotEnd"а).


На фото классический репраповский экструдер - родоначальник всех 3d-печатающих механизмов у самодельщиков.

Стоит отметить тот факт, что редуктор (с отношением не менее1:5) обязательно нужен для привода филамента диаметром 3,0 мм. Назначение редуктора - повысить момент на валу за счет уменьшения частоты вращения. Другими словами, будет крутить сильнее, но медленнее, а нам, как раз, большая частота вращения и не нужна - пластик должен успевать плавиться.
Если имеем дело с прутком 1,75 мм либо еще меньшего диаметра, то редуктор нам делать необязательно. Хотя, если используется совсем слабый двигатель (например, от старого принтера Epson, который я использовал поначалу), то редуктор все-таки придется делать.

На фото как раз такой двигатель и экструдер, сделанный на его основе из деталей от старых принтеров.

В промышленных 3D-принтерах экструдер выглядит очень даже похоже:

На фото сердце принтера компании Stratasys - тех самых товарищей, которые и придумали (и запатентовали) технологию печати расплавленным пластиком.

Есть, конечно, и более навороченные варианты, но они сложноваты в реализации, поэтому не годятся для самостоятельного (кустарного) изготовления:

Так как пластик 3 мм значительно (!) дешевле более тонких вариантов (к тому же распространеннее), то и привод мы будем делать, рассчитывая на более тостый филамент. А уже пластик 1,75 (и подобные) мы сможем "толкать" этим экструдером вообще без проблем. В этом случае потребуется лишь небольшая модификация хотэнда (об этом позже).

Итак.

Для начала нам нужен двигатель. Причем шаговый и очень желательно биполярный, иначе с управлением придется повозиться. Отличить его от униполярного (еще одна разновидность шаговиков) можно по количеству выводов. Их должно быть 4. В этом случае можно будет использовать типовой драйвер управления (Pololu). Схема такого двигателя:

Цвет проводов может быть абсолютно любым, поэтому проверяем где какие обмотки тестером. По поводу начала/конца обмотки - это мы будем определять экспериментально при подключении и движка.

В принципе, можно подключить и двигатель, который имеет 6 выводов - главное правильно определить где какие обмотки, после чего просто останется 2 ненужных провода, которые можно просто отрезать.


В данном случае у нас останутся неподключенными "желтый" и "белый" провода.

Из старых принтеров можно наковырять много полезного, но движки там стоят очень слабые, особенно в новых струйниках, поэтому годятся для применения только с редукторами с очень большим передаточным отношением. Вот пример таких двигателей:


Из всего этого многообразия для использования в качестве привода филамента пойдет разве что Epson EM-257 - он как раз имеет нужное количество выводов (4), а также более-менее неплохой момент на валу. Вот еще несколько подобных двигателей:


Они конечно слабоваты для нашей цели, и, в идеале, лучше использовать аналог Nema17 (тот, что применяется в оригинальном репрапе), зато их можно купить за копейки на любом радиорынке или выковырять из старого железа. К слову - не стоит брать за основу экструдера советские ДШИ-200, которые очень популярны у станкостроителей, т.к. они слишком тяжелые, чтобы их тягать в качестве печатающей головы.

Из доступных в России можно выделить сайт магазина "Электропривод" , на котором продают аналог Nema17 - FL42STH. Я выбрал для принтера двигатели FL42STH47-1684A, которые прекрасно подходят не только для экструдера, но и для привода всех осей.

Теперь нам необходим редуктор.

Понятно, что, чем меньше его габариты, тем лучше для нас - меньше будет общая масса печатающей головки, соответственно и скорость позиционирования (как и скорость печати в целом) будет выше.

Изначально планировалось использовать шаговый двигатель с планетарным редуктором промышленного изготовления, наподобие вот такого:

Но найти его в России по нормальной цене просто нереально, да и в Китае они продаются совсем не по доступным средствам, поэтому, как всегда, все своими силами.

Для себя я определил (в итоге) идеальный вариант - планетарный редуктор, вытащенный из старого шуруповерта, переделанный для использования с шаговым двигателем.

Донор выглядит примерно так как на фото. А в разобранном виде что-то вроде:


Фото не мое, но принципиально эти планетарные редукторы сильно друг от друга не отличаются. Поэтому ищем дохлый шуруповерт и вперед - разбирать.

Как и раньше, нам понадобится толковый токарь, который поможет насадить приводную шестерню от оригинального шуруповертного движка на наш шаговик. Также необходимо будет выточить крышку-корпус для подшипника выходного вала. Фотографии моего варианта выложу позже (придется разобрать готовый экструдер). Можно, в принципе, сделать чертеж крышки, которая была выточена из алюминия, хотя токарю обычно хватает простого объяснения "на пальцах" чего именно мы хотим от него получить.

Вроде бы пора брать фотоаппарат в руки и начинать детальную фотосессию всех тонкостей процесса, а то в интернете кончились картинки, которые идеально подойдут к моему описанию.


Когда дело касается настольных 3d принтеров, мы можем наблюдать, что цены на эти устройства в течение последних нескольких лет значительно упали. Сейчас практически каждый желающий может позволить себе приобрести такое устройство и сделать его частью своей жизни, создавая самые разнообразные трехмерные изделия. Существует лишь одно препятствие, которое становится причиной отказа в покупке 3d принтера – это стоимость материала. Сейчас специалисты побороли эту проблему и сконструировали устройство, позволяющее создавать рабочий материал прямо у себя дома, а его цена, по сравнению со стандартной, выглядит просто смешной.

Средняя цена на пластиковую нить составляет порядка 40 долларов за килограмм. Те люди, кто активно пользуются 3d принтерами, прекрасно знают, что такое количество может быть использовано в течение всего пары дней. Если произвести простые математические расчеты и умножить данную стоимость на недели, месяцы или годы, можно получить в итоге довольно кругленькую сумму.

В последнее время компании озаботились данным вопросом и начали создавать специальные устройства, которые могут снизить цену нити с десятков долларов, до единиц. Эти машины создают рабочий материал путем переплавки специальных пластиковых гранул, с последующей намоткой готовой нити на катушку. Гранулы получить гораздо проще, а соответственно это помогает снизить конечную стоимость эксплуатации 3d принтеров.

Совсем скоро компания 3devo представит миру свое изделие, ранее зарегистрированное на площадке Kickstarter. NEXT 1.0 – это одна из тех машин, которая позволит создавать нити для FFF/FDM принтеров прямо у себя дома.

“Машины для создания материала для FFF/FDM представлены самыми различными компаниями, но 3devo отличается от других тем, что уделяют внимание мелочам и качеству конечного продукта, а также материалу, который будет изготавливаться в процессе эксплуатации. В отличие от других аналогичных устройств, которые создают некачественную нить, с неплотной структурой, NEXT 1.0 предназначен для изготовления профессионального материала. Эта нить в последующем может с легкостью наматываться сразу на катушку 3d принтеров, что позволяет добиться действительно невероятных результатов. 3devo делают все максимально возможное и невозможное, чтобы сделать вашу жизнь действительно комфортной”, — рассказывает Лукас ван Лиувен (Lucas van Leeuwen).

NEXT 1.0 имеет 7 основных функций, которые, по словам специалистов компании, выделяют его среди остальных подобных устройств:

  1. Создание высококачественной нити – специальная система последовательной экструзии позволяет легко транспортировать гранулы внутрь устройства и превращать их в плотные нити.
  2. Система трехмерного обогрева – в отличие от других устройств для создания FDM/FFF нити в домашних условиях, NEXT 1.0 оснащен тремя зонами обогрева, а температура каждой из них может быть отрегулирована независимо друг от друга.
  3. Встроенный датчик Хоппера – он напомнит пользователю о том, что гранулы заканчиваются и пора позаботиться о дозаправке.
  4. Система управления диаметром – пользователь самостоятельно выбирает диаметр изготавливаемой нити.
  5. Система автоматической намотки готовой нити.
  6. Возможность легкой и быстрой заменой катушки.
  7. Доступный и понятный пользовательский интерфейс, которым могут пользоваться даже люди, использующие устройство впервые.

Создание машин для генерации FDM-нити – это не только предоставление пользователям возможности сэкономить, но и очередной шаг в развитии 3d технологий. В дальнейшем, 3devo хотят добавить возможность

Небольшой отчет о покупке и установке комплекта экструдера для 3D принтера. Для тех, кто хочет добавить цветную печать в свой принтер.

Давно назрел апгрейд 3D принтер, особенно хотелось попробовать цветную печать - обзавестись двойным экструдером на принтере Tevo Tarantula. В свое время не было в наличии версии Large и Dual, взял просто Large, но с прицелом, что когда нибудь…

Но это когда-нибудь настало. Заранее были приобретены комплекты для апгрейда: (extruder coolend) с высокомоментным двигателем, а также «горячая» часть - с двумя каналами для двух цветов пластика. В комплекте были нужные провода, нагреватели, термодатчики.
Для доработки потребуется:
- высокомоментный двигатель. То есть шаговик, который будет крутиться не быстро, но точно. А момент нужен, чтобы «продавливать» пластик через сопло. И если сопло стоит 0,8 мм, то высокий момент не нужен, то для маленьких сопел с отверстием 0,3...0,2 мм нужен обязательно, момент возрастает в несколько раз. Как вариант - использование двигателя с редуктором.
- набор для механизма экструдера. Это прижимы, ролик, зубчатое колесо, пружина, фланцы.
- скоба крепления двигателя.
- провод подключения двигателя. Обычно правда сразу идет в комплекте с двигателем.
- если на плате отсутствует выход под второй (третий) двигатель экструдера, то необходимо будет купить разветвитель-адаптер 2-in-1 для установки драйвера нового двигателя.
- трубка подачи пластика (тефлоновая трубка OD=4/ID=2, то есть внешний диаметр 4 мм, внутренний 2 мм. трубки с внутренним диаметром 4 мм обычно идут не для 1,75 прутка, а для 3мм прутка) - трубка «боудена».

для «горячей части»:
- два радиатора Е3D или один двойной.
- два нагревательных блока
- нагревательные картриджи и термисторы.
- вентилятор обдува термобарьера.

Для сборки и настройки:
- прямые руки
- модифицированная прошивка
- настройка и калибровка. Учитывайте расстояние между соплами. Учитывайте, что по X и Y осям второй хотэнд чуть «съел» расстояние. Сопла должны быть на одном уровне (по высоте). Даже 0,1 мм имеет значение на итоговое качество печати. Для дельта принтера два сопла очень тяжело калибруются.

Несколько слов про популярные микширующие/двойные Хотэнды.
Это так называемые Химера и Циклоп.
- это глубокая модификация E3D хотэнда с плоским радиатором, двумя входами (фланцы) и двумя нагревательными блоками.


Циклоп (Ciclop) - аналог Химеры, тот же радиатор и два канала, но общий нагревательный блок и одно сопло.


Внутри блока два канала сводятся в один


Смена пластика происходит ретрактом одного прутка и подачей другого. Минус - пластики должны иметь близкую температуру плавления, так как нагреватель один, общий и общий термодатчик. То есть «подружить» PLA и, например, ABS не получится. А вот ABS и HIPS - вполне. Соответственно не подходит для печати поддержек PVA пластиком, так как PVA имеет низкую температуру плавления и при 200-210° С уже перегревается и получается пробка в канале.
Есть еще Diamond hotend, заострять внимание на нем не буду, так как кроме нестандартного сопла на 0,4мм за бешеные деньги они не могут ничего предложить.

Итак, решено было взять комплектом все, перестраховываясь от различных несовместимостей и дополнительного ожидания. Был заказан комплект механизм подачи+двигатель и отдельно комплект двойного экструдера.

Характеристики комплекта MK7/MK8 All Metal Remote Extruder Kit
Диаметр прутка - 1,75 мм
Материал механизма - анодированный алюминий («7075 авиационный» сплав)
Размещение: Слева, справа, по центру.
- 2 фитинга для PTFE трубки с диаметром 4 мм
- кабель подключения двигателя
- двигатель 17hd40005-22b
- U-ролик 624ZZ
- скоба крепления
- MK7 зубчатое колесо с проточкой
- шестигранник
- пружина
- комплект винтов.

Теперь чуть более подробно про купленный комплект. Пришло все в простом пакете и в пупырке. Посылка достаточно тяжелая.


Огромный плюс - фуллметалл, то есть отсутствие пластиковых деталей в механизме экструдера. Почему плюс - потому что в моей уже люфты (выработка), плюс повреждено пластиковое крепление. Перепечатывал, но не торт. Лучше пусть все будет металлическое.
Так что при доставке ничего не пострадало. Распаковываем смело!


Маркировка высокомоментного шагового двигателя.


Зубчатая шестеренка с проточкой.


Дополнительная информация для тех, кто хочет купить по отдельности комплект




Характеристики


Сравните с характеристиками «обычного»

Далее . Бывает трех видов: для установки слева, справа, по центру. Отличаются фрезеровкой на «ручке» - рычаге, на который нажимают при заправке пластика. Можно оценить, если знаете уже место расположения экструдера.


В этом комплекте идет прямая зубчатая шестерня, если брать , то это еще плюсом.

Можно взять вот


Хотэнд



И к нему


Плюс термистор, нагревательный картридж, фланцы для пластика, трубка.
Можно на радиатор установить не блок-циклоп, а обычные блоки типа volcano, две штуки. Только трубки-горловины нужны без резьбы.


Основное все. ИМХО, дешевле купить все в наборе, с нагревателями, термисторами и вентилятором.

Начинаем собирать комплект. Тут дело не хитрое.
Устанавливаем шестерню. Потребуется с шестигранник на 1,5.


Далее в таком порядке: скоба-основание-рычаг-пружина.
Естественно скоба сначала крепится на нужное место принтера, иначе у вас не будет возможности закрепить, так как пазы окажутся под корпусом двигателя. Для наглядности я соберу сначала без установки на принтер.


Обратите внимание на разную длину и диаметр винтов. Каждый предназначен для своего отверстия.


Далее устанавливаем рычаг и пружины
Получилось как то вот так.


Затем прикручиваем фланцы для прутка


Вот фотография комплекта до «примерки»


Примеряем к принтеру. На принтере сейчас штатно установлен простой экструдер с модифицированный E3D (который имеет трубку до самого сопла). Для установки хотэнда Циклоп потребуется заменить каретку оси Х.


Для окончательной установки мне еще предстоит напечатать крепление для экструдера, либо найти удобное положение скобы для крепления на профиль 2020.

Итак, несколько слов о модификации прошивки Tevo Tarantula.
Заходим в онлайн конструктор прошивки
И сразу же загружаем свой Configuration.h. Мы получаем возможность модифицировать заведомо рабочую прошивку своего принтера.


На четвертой вкладке «Tools» нажимаем «добавить экструдер». По умолчанию у нас только один, Extruder0.


Добавляем Extruder1.


И конфигурируем его. Указываем pin по необходимости.


Обратите внимание, что если у вас микширующий хотэнд с одним нагревателем и одним термистором, это тоже необходимо указать в прошивке.
Нагреватель0 и Темп0 для основного экструдера. Если отдельный блок нагревателя у второго - то указываем Нагреватель2 и Темп2 для второго экструдера. Далее сохраняем, заливаем в принтер и пробуем.

В управляющей программе либо с дисплея даем задание на подачу N мм прутка. Например, 100 мм. И затем измеряем результат: могло вылезти больше или меньше. Учитываем разницу, вводим поправочный коэффициент в прошивку и перепроверяем еще раз. Операцию лучше всего проводить со снятой трубкой боудена.
Вот сюда в файле Configuration.h в разделе «default settings» прописываем количество шагов DEFAULT_AXIS_STEPS_PER_UNIT для экструдера (четвертое значение, первые три - оси Х, У, Z).
#define DEFAULT_AXIS_STEPS_PER_UNIT {80,80,1600,100} // custom steps per unit for TEVO Tarantula


Высчитываем поправочный коэффициент и заносим. Например, выдавило больше чем надо, не 100, а 103 мм. Делим 100/103, полученный результат заносим в прошивку.
#define DEFAULT_AXIS_STEPS_PER_UNIT {80,80,1600,97.0874} // custom steps per unit for TEVO Tarantula


Сохраняем, компилируем, заливаем, проверяем.

Дополнительная информация - расчет количества шагов экструдера

Если что - расчет количества шагов экструдера DEFAULT_AXIS_STEPS_PER_UNIT считается по формуле:
steps per mm=micro steps per rev * gear ratio / (pinch wheel diameter * pi)
где micro steps per rev - количество микрошагов двигателя для 1 оборота = 3200, то есть 16 микрошагов на шаг, 200 шагов за оборот
- количество микрошагов двигателя для 1 оборота
gear ratio - соотношение количества зубьев в редукторе экструдера. В моем Тево редуктора нет, поэтому =1
pinch wheel diameter - диаметр впадины толкающего винта

После расчета всеравно проверять по указанной выше методике.

В группе FB есть некоторые публикации на