Значение водородной связи в биологии. Водородная связь. Роль водородной связи в процессах ассоциации, растворения и биохимических процессах. Комплексные соединения. Теория Вернера. Роль в живом организме

Значение водородной связи в биологии. Водородная связь. Роль водородной связи в процессах ассоциации, растворения и биохимических процессах. Комплексные соединения. Теория Вернера. Роль в живом организме

Водородные связи –специфическая связь, которая создается атомом Н, который находится в группах ОН, NH, FH, ClH и иногда SH, причем Н связывает эти группы с валентно насыщенными атомами N2, O2 и F.


Водородные связи определяют структуру и свойства воды, как самого главного и основного растворителя в биосистемах. Водородные связи участвуют в формировании макромолекул, биополимеров, а так же связях с малыми молекулами.


Uвод = 4-29 кДж/моль


Основной вклад в водородные связи вносят электростатические взаимодействия, но они не сводятся к ним. Протон движется вдоль прямой, соединяющей электроотрицательные атомы и испытывает различное влияние со стороны этих атомов.

Этот график – частный случай, связь между N-H...N и N...H-N. R – расстояние между взаимодействующими частицами. 2 минимума свободной энергии располагаются возле первого или второго взаимодействующего атома N.


  • Водородные связи –специфическая связь , которая создается атомом Н, который находится в группах ОН, NH, FH, ClH и иногда SH, причем Н связывает эти группы с валентно насыщенными атомами N2, O2 и F.


  • Водородная связь и ее роль в биологических системах . Водородные связи –специфическая связь , которая создается атомом Н, который находится в группа.


  • Водородная связь и ее роль в биологических системах .
    Она построена в виде сети из белковых фибриллярных молекул, среди которых существенную роль играет альфа-актинин.


  • Водородная связь и ее роль в биологических системах . Водородные связи –специфическая связь


  • Водородная связь и ее роль в биологических системах . Водородные связи –специфическая связь , которая создается атомом Н, который находится в группах ОН, ... подробнее ».


  • Водородная связь и ее роль в биологических системах . Водородные связи –специфическая связь , которая создается атомом Н, который находится в группах ОН, ... подробнее ».


  • Роль в биологических системах .
    водородная связь Химические связи


  • 2) межмолекулярной, если атомы ЭА и ЭВ находятся в разных молекулах. Внутримолекулярные водородные связи играют важ–нейшую биологическую роль , так как определяют, на–пример, спиральную структуру полимерных молекул белков.


  • Челночные механизмы переноса водорода . Главная роль ЦТК - образование большого количества АТФ.
    В этой транспортной системе водород от цитоплазматического НАД передается на митохондриальный НАД, поэтому в митохондриях образуется 3 молекулы АТФ и...


  • Роль диффузии в процессах переноса веществ в биологических системах .
    Межмолекулярная и внутримолекулярная водородная связь Химические связи в молекулах обычно очень про... подробнее ».

Найдено похожих страниц:10


Понятие водородная связь

Атом водорода, связанный с сильно электроотрицательным атомом (кислорода, фтора, хлора, азота) может взаимодействовать с неподеленной электронной парой другого сильно электроотрицательного атома этой или другой молекулы с образованием слабой дополнительной связи -- водородной связью. При этом может установиться равновесие

Рисунок 1.

Появление водородной связи предопределено исключительностью атома водорода. Атом водорода гораздо меньше, чем другие атомы. Электронное облако, образованное им и электроотрицательным атомом сильно смещено в сторону последнего. В результате ядро водорода остается слабоэкранированным.

Атомы кислорода гидроксильных групп двух молекул карбоновых кислот, спиртов или фенолов могут близко сходиться из-за образования водородных связей.

Положительный заряд ядра атома водорода и отрицательный заряд другого электроотрицательного атома притягиваются. Энергия их взаимодействия сопоставима с энергией прежней связи, поэтому протон оказывается связанным сразу с двумя атомами. Связь со вторым электроотрицательным атомом может быть более сильной, чем первоначальная связь.

Протон может передвигаться от одного электроотрицательного атома к другому. Энергетический барьер у такого перехода незначительный.

Водородные связи относятся к числу химических связей средней силы, но, если таких связей много, то они способствуют образованию прочных димерных или полимерных структур.

Пример 1

Образование водородной связи в $\alpha $-спиральной структуре дезоксирибонуклеиновой кислоты, алмазоподобная структура кристаллического льда и др.

Положительный конец диполя в гидроксильной группе находится у атома водорода, поэтому через водород может формироваться связь с анионами или электроотрицательными атомами, содержащими неподеленные электронные пары.

Практически во всех других полярных группах положительный конец диполя расположен внутри молекулы и поэтому является трудно доступным для связывания. У карбоновых кислот $(R=RCO)$, спиртов $(R=Alk)$, фенолов $(R=Ar)$ положительный конец диполя $OH$ находится снаружи молекулы:

Примеры нахождения положительного конца диполя $C-O, S-O, P-O$ внутри молекулы:

Рисунок 2. Ацетон, диметилсульфоксид (ДМСО), гексаметилфосфортриамид (ГМФТА)

Так как стерические препятствия отсутствуют, водородная связь образуется легко. Ее сила, в основном определяется тем, что она преимущественно имеет ковалентный характер.

Обычно наличие водородной связи обозначают пунктирной линией между донором и акцептором, например, у спиртов

Рисунок 3.

Как правило, расстояние между двумя атомами кислорода и водородной связи меньше суммы ван-дер-ваальсовых радиусов атомов кислорода. Должно присутствовать взаимное отталкивание электронных оболочек атомов кислорода. Однако силы отталкивания преодолеваются силой водородной связи.

Природа водородной связи

Природа водородной связи заключается в электростатическом и донорно -- акцепторном характере. Основную роль в формировании энергии водородной связи играет электростатическое взаимодействие. В образовании межмолекулярной водородной связи принимают участие три атома, которые располагаются почти на одной прямой, но расстояния между ними, при этом, различны. (исключение составляет связь $F-H\cdots F-$).

Пример 2

Для межмолекулярных водородных связей во льду $-O-H\cdots OH_2$ расстояние $O-H$ равно $0,097$ нм, а расстояние $H\cdots O$ равно $0,179$ нм.

Энергия большинства водородных связей лежит в пределах $10-40$ кДж/моль, а это намного меньше энергии ковалентной или ионной связи. Часто можно наблюдать, что прочность водородных связей возрастает с увеличением кислотности донора и основности акцептора протона.

Значение межмолекулярной водородной связи

Водородная связь играет существенную роль в проявлениях физико -- химических свойств соединения.

Водородные связи оказывают следующее влияние на соединения:

Внутримолекулярные водородные связи

В случаях, когда возможно замыкание шестичленного или пятичленного цикла, образуются внутримолекулярные водородные связи.

Наличие внутримолекулярных водородных связей в салициловом альдегиде и о-нитрофеноле является причиной отличия их физических свойств от соответствующих мета- и пара- изомеров.

$o$-Гидроксибензальдегид или салициловый альдегид $(A)$ и $o$-нитрофенол (Б) не образуют межмолекулярные ассоциаты, поэтому имеют более низкие температуры кипения. Они плохо растворимы в воде, так как не участвуют в образовании межмолекулярных водородных связей с водой.

Рисунок 5.

$o$-Нитрофенол является единственным из трех изомерных представителей нитрофенолов, который способен перегоняться с водяным паром. На этом свойстве основано его выделение из смеси изомеров нитрофенола, которая образуется в результате нитрования фенолов.

Химические связи в молекулах обычно очень прочны, их энергия находится в пределах 100-150 кДж/моль. Кроме этого существуют так называемые водородные связи, прочность которых составляет 10-40 кДж/моль. Длина этих связей соответственно 270-230 пм. Водородной связью между атомами Эа и Эв называют взаимодействие, осуществляемое атомом водорода, соединенным с Эа или Эв химической связью.

Изображение водородной связи в общем случае имеет вид: Эа-Н…Эв. Очевидно, что во­дородная связь трех­центровая, так как в ее образовании принимают участие три атома. Для воз­никновения такой связи необходимо, чтобы атомы Эа иЭв обладали большой электроотрицательностью. Это атомы наи­более отрицательных элементов: азота (ОЭО = 3,0), кислорода (ОЭО = 3,5), фтора (ОЭО = 4,0) и хлора (ОЭО =3,0). Водо­родная связь образуется в результате комбинации ls-AO водо­рода и двух 2р-АО атомов Эа и Эв. 2р-орбитали ориентированы вдоль одной прямой. Поэтому водородная связь линейная. Водородную связь называют: 1) внутримолекулярной, если атомы Эа и Эв, соединенные этой связью, принадлежат одной и той же молекуле; 2) межмолекулярной, если атомы Эа и Эв в разных молекулах. Внутримолекулярные водородные связи играют важнейшую биологическую роль, так как определяют, например, спиральную структуру полимерных молекул белков. В белках - это связи N-Н…0 между аминокислотными остатками. Не менее важны межмолекулярные водородные связи. С их помощью соединены цепи нуклеиновых кислот, образующих двой­ную спираль. Здесь имеются два типа связей между нуклеино­выми основаниями N-H…N и N-Н…0. Средняя кинетическая энергия теплового движения молекул имеет значение порядка 3/2RT. При температуре человеческого тела 37 °С (310 К) это составляет около 4 кДж/моль. Прочность водородных связей находится в пределах 10-40 кДж/моль. Поэтому они достаточно прочны, чтобы выдерживать постоянные удары окружающих молекул и обеспечивать постоянство формы полимерных биологических структур. Вместе с тем при ударах активных молекул водородные связи периодически разрываются, затем вновь восстанавливаются, обеспечивая протекание раз­личных процессов жизнедеятельности. Рассмотренные примеры наглядно иллюстрируют более ши­рокий круг применения метода МО ЛКАО, чем метода ВС. Тем не менее метод ВС может успешно использоваться для прогно­зирования свойств и строения многих веществ и в том числе комплексных соединений.

Вопрос 37. Современное содержание понятия «комплексные соединения» (КС). Структура КС: центральный атом, лиганды, комплексный ион, внутренняя и внешняя сфера, координационное число центрального атома, дентатность лигандов.

Комплексные соединения - наиболее обширный и разнообразный класс соединений. В живых организмах присутствуют комплексные соединения биогенных металлов с белками, аминокислотами, порфиринами, нуклеиновыми кислотами, углеводами, макроциклическими соединениями. Важнейшие процессы жизнедеятельности протекают с участием комплексных соединений. Некоторые из них (гемоглобин, хлорофилл, гемоцианин, витамин В12 и др.) играют значительную роль в биохимических процессах. Многие лекарственные препараты содержат комплексы металлов. Например, инсулин (комплекс цинка), витамин В12 (комплекс кобальта), платинол (комплекс платины) и т.д. Комплексными соединениями называются соединения, существующие как в кристаллическом состоянии, так и в растворе, особенностью которых является наличие центрального атома, окруженного лигандами. Комплексные соединения можно рассматривать как сложные соединения высшего порядка, состоящие из простых молекул способных к самостоятельному существованию в растворе. Строение комплексных соединений, или просто комплексов, раскрыл швейцарский уче­ный А. Вернер в 1893 г. Многие положения его теории легли в основу современных представлений о структуре комплексов. В молекулах комплексных соединений выделяют центральный атом или ион М и непосредственно связанных с ним n-молекул (или ионов) L, называемых лигандами. Центральный атом с окружающими его лигандами образуют внутреннюю сферу комплекса MLn. В зависимости от соотношения суммарного заряда лигандов и комплексообразователя внутренняя сфера может иметь положительный заряд, например, 3+, либо отрицательный, например, 3-, или нулевой заряд, например, как для 0. Помимо лигандов в состав комплекса могут входить m других частиц X, непосредственно не связанных с центральным атомом. Частицы X образуют внешнюю сферу комплекса, они нейтрализуют заряд внутренней сферы, но не связаны с комплексообразователем ковалентно. Общая запись формулы комплексного соединения имеет вид: Xm, где М - центральный атом; L - лиганд; X - внешнесферная частица (молекула или ион); в квадратные скобки за­ключены частицы внутренней сферы. Комплексные со­единения часто называют координационными. Число п лигандов соответственно называется координационным числом, а внутрен­няя сфера - координационной. Центральный атом (комплексообразователь) – атом или ион, который занимает центральное положение в комплексном соединении. Центральный атом координирует лиганды, геометрически пра­вильно располагая их в пространстве. Роль комплексообразователя чаще всего выполняют частицы, имеющие свободные орбитали и достаточно большой положительный заряд ядра, а следовательно могут быть акцепторами электронов. Это катионы переходных элементов. Наиболее сильные комплексообразователи – элементы IВ и VIIIВ групп. Редко в качестве комплексообразователей выступают нейтральные атомы d–элементов и атомы неметаллов в различной степени окисления-. Число свободных атомных орбиталей, предоставляемых комплексообразователем, определяет его координационное число. Величина координационного числа зависит от многих факторов, но обычно она равна удвоенному заряду иона комплексообразователя. Наиболее прочные комплексы образуют d-элементы. Для жизне­деятельности человека особенно важны комплексные соединения Мп, Fe, Со, Си, Zn, Мо. Амфотерные p-элементы Al, Sn, Pb также обра­зуют различные комплексы. Биоген­ные s-элементы Na, К, Са, Mg могут образовывать непрочные комплекс­ные соединения с лигандами определенной структуры. Чаще всего комплексообразователем служит атом элемента в положительной степени окисления. Отрицательные условные ионы (т.е. атомы в отрицательной степени окисления) играют роль комплексообразователей сравнительно редко. Это, например, атом азота(-III) в катионе аммония + и т.п. Атом-комплексообразователь может обладать нулевой степенью окисления. Так, карбонильные комплексы никеля и железа, имеющие состав и , содержат атомы никеля(0) и железа(0). В комплексном ионе или нейтральном комплексе вокруг комплексообразователя координируются ионы, атомы или простые молекулы (L). Все эти частицы (ионы или молекулы), имеющие химические связи с комплексообразователем, называются лигандами (лиганды являются донорами электронных пар). В комплексных ионах 2- и 4- лигандами являются ионы Cl- и CN-, а в нейтральном комплексе лиганды – молекулы NH3 и ионы NCS-. Лиганды, как правило, не связаны друг с другом, и между ними действуют силы отталкивания. В отдельных случаях наблюдается межмолекулярное взаимодействие лигандов с образованием водородных связей. Лигандами могут быть различные неорганические и органические ионы и молекулы. Важнейшими лигандами являются ионы CN-, F- , Cl-, Br-, I-, NO2-, OH-, SO3S2-, C2O42-, CO32-, молекулы H2O, NH3, CO, карбамида (NH2)2CO. Важнейшей характеристикой комплексообразователя является количество химических связей, которые он образует с лигандами, или координационное число (КЧ). Эта характеристика комплексообразователя определяется главным образом строением его электронной оболочки и обусловливается валентными возможностями центрального атома или условного иона-комплексообразователя. Когда комплексообразователь координирует монодентатные лиганды, то координационное число равно числу присоединяемых лигандов. А число присоединяемых к комплексообразователю полидентатных лигандов всегда меньше значения координационного числа. Значение координационного числа комплексообразователя зависит от его природы, степени окисления, природы лигандов и условий (температуры, природы растворителя, концентрации комплексообразователя и лигандов и др.), при которых протекает реакция комплексообразования. Значение КЧ может меняться в различных комплексных соединениях от 2 до 8 и даже выше. Наиболее распространенными координационными числами являются 4 и 6. Элементы-комплексообразователи со степенью окисления +II (ZnII, PtII, PdII, CuII и др.) часто образуют комплексы, в которых проявляют координационное число 4, такие как 2+, 2-, 0. В аквакомплексах координационное число комплексообразователя в степени окисления +II чаще всего равно 6: 2+. Элементы-комплексообразователи, обладающие степенью окисления +III и +IV (PtIV, AlIII, CoIII, CrIII, FeIII), имеют в комплексах, как правило, КЧ 6. Например, 3+, 3-. Известны комплексообразователи, которые обладают практически постоянным координационным числом в комплексах разных типов. Таковы кобальт(III), хром(III) или платина(IV) с КЧ 6 и бор(III), платина(II), палладий(II), золото(III) с КЧ 4. Тем не менее большинство комплексообразователей имеет переменное координационное число. Например, для алюминия(III) возможны КЧ 4 и КЧ 6 в комплексах- и -. Чаще всего лиганд бывает связан с комплексообразователем через один из своих атомов одной двухцентровой химической связью. Такого рода лиганды получили название монодентатных . К числу монодентатных лигандов относятся все галогенид-ионы, цианид-ион, аммиак, вода и другие. Некоторые распространенные лиганды типа молекул воды H2O, гидроксид-иона OH-, тиоцианат-иона NCS-, амид-иона NH2-, монооксида углерода CO в комплексах преимущественно монодентатны, хотя в отдельных случаях (в мостиковых структурах) становятся бидентатными . Существует целый ряд лигандов, которые в комплексах являются практически всегда бидентатными. Это этилендиамин, карбонат-ион, оксалат-ион и т.п. Каждая молекула или ион бидентатного лиганда образует с комплексообразователем две химические связи в соответствии с особенностями своего строения:

Водородные связи характерны не только для воды. Они легко образуются между любым электроотрицательным атомом (обычно кислородом или азотом) и атомом водорода, ковалентно связанным с другим электроотрицательным атомом в той же или другой молекуле (рис. 4-3). Атомы водорода, соединенные ковалентной связью с сильно электроотрицательными атомами, такими, как кислород, всегда несут частичные положительные заряды и потому способны к образованию водородных связей, тогда как атомы водорода, ковалентно связанные с атомами углерода, которые не обладают электроотрицательностью, не несут частичного положительного заряда и, следовательно, не способны образовывать водородные связи. Именно это различие служит причиной того, что бутиловый спирт в молекуле которого один из атомов водорода связан с кислородом и может, таким образом, образовать водородную связь с другой молекулой бутилового спирта, обладает сравнительно высокой температурой кипения (+117° С). Наоборот, бутан который не способен образовывать межмолекулярные водородные связи, поскольку все атомы водорода в его молекулах связаны с углеродом, имеет низкую температуру кипения (- 0,5° С).

Некоторые примеры биологически важных водородных связей показаны на рис. 4-4.

Рис. 4-3. Водородные связи. В связях этого типа атом водорода неравномерно распределен между двумя электроотрицательными атомами. А с которым водород связан ковалентно, служит донором водорода, а электроотрицательный атом другой молекулы акцептором. В биологических системах электроотрицательными атомами, участвующими в образовании водородных связей, являются кислород и азот; атомы углерода принимают участие в образовании водородных связей только в редких случаях. Расстояние между двумя электроотрицательными агомами, соединенными водородной связью, варьирует от 0,26 до 0,31 нм. Ниже показаны обычные типы водородных связей.

Одна из характерных особенностей водородных связей состоит в том, что они обладают наибольшей прочностью в тех случаях, когда взаимная ориентация связанных между собой молекул обеспечивает максимальную энергию электростатического взаимодействия (рис. 4-5). Другими словами, водородная связь характеризуется определенной направленностью и вследствие этого способна удерживать обе связанные с ее помощью молекулы или группы в определенной взаимной ориентации. Ниже мы увидим, что именно это свойство водородных связей способствует стабилизации строго определенных пространственных структур, характерных для молекул белков и нуклеиновых кислот, содержащих большое число внутримолекулярных водородных связей (гл. 7, 8 и 27).

Водород – элемент VII группы периодической системы с атомным номером 1. Впервые выделен фламандским химиком И. Ван Гельмонтом в XVII в. Изучен английским физиком и химиком Г. Кавендишем в конце XVIII в. Название водорода происходит от греч. hydro genes (порождающий воду).

Водород является одним из самых распространенных элементов во Вселенной. Энергия излучаемая Солнцем рождается в результате реакции слияния четырех ядер водорода в ядро гелия. На Земле водород входит в состав воды, минералов, угля, нефти, живых существ. В свободном виде небольшие количества водорода встречаются в вулканических газах.

Водород – газ без цвета и запаха, не растворяется в воде, образует с воздухом взрывоопасные смеси. Существуют три разновидности водорода: протий, дейтерий и тритий, различающиеся по числу нейтронов. Получают водород при электролизе воды, в качестве побочных продуктов при переработке нефти.

  • Биологическая роль водорода

    Роль водорода в природе определяется не массой, а числом атомов, доля которых среди остальных элементов составляет 17% (второе место после кислорода, доля атомов которого равна ~ 52%). Поэтому значение водорода в химических процессах, происходящих на Земле, почти так же велико, как и кислорода. В отличие от кислорода, существующего на Земле и в связанном, и в свободном состояниях практически весь водород на Земле находится в виде соединений. Лишь в очень незначительном количестве водород в виде простого вещества содержится в атмосфере (0,00005% по объему).

    Основная функция водорода – структурирование биологического пространства (вода и водородные связи) и формирование разнообразия органических (биологических) молекул. Водород способен реагировать с электронположительными и электронотрицительными атомами, активно взаимодействовать со многими элементами, проявляя при этом как окислительные, так и восстановительные свойства. В реакциях со щелочными и щелочноземельными металлами водород выступает в качестве окислителя, а по отношению к кислороду, сере, галогенам проявляет восстановительные свойства.

    При потере электрона атом водорода переходит в элементарную частицу - протон. В водном растворе протон переходит в катион гидроксония, который гидратируется тремя молекулами воды и образует гидратированный катион гидроксония H 9 O 4+ . В виде этого катиона протоны и находятся в водном растворе.

    В биологических процессах протон играет исключительно важную роль: определяет кислотные свойства растворов, участвует в окислительно-восстановительных превращениях. С участием ионов водорода происходит связывание катионов металлов в биокомплексы, протекают реакции осаждения (напр., образование минеральной основы костной ткани), гидролитический распад липидов, полисахаридов, пептидов.

    В организме человека водород в соединениях с другими макроэлементами образует аминогруппы и сульфгидрильные группы, играющие важнейшую роль в функционировании различных биомолекул. Водород входит в структуру белков, углеводов, жиров, ферментов и других биоорганических соединений, выполняющих структурные и регуляторные функции. Благодаря водородным связям осуществляется копирование молекулы ДНК, которая передает генетическую информацию из поколения в поколение.

    Вступая в реакцию с кислородом, водород образует молекулу воды. Вода – основное вещество, из которого состоит организм. В теле новорожденного человека содержание воды составляет около 80%, у взрослого – 55-60%. Вода принимает участие в громадном количестве биохимических реакций, во всех физиологических и биологических процессах, обеспечивает обмен веществ между организмом и внешней средой, между клетками и внутри клеток. Вода является структурной основой клеток, необходима для поддержания ими оптимального объема, она определяет пространственную структуру и функции биомолекул.

    В биосредах часть воды (около 40%) находится в связанном состоянии (ассоциаты с неорганическими ионами и биомолекулами). Остальная часть, т.е. свободная вода, представляет собой ассоциированную водородными связями подвижную структуру. Между свободной и связанной водой происходит непрерывный обмен молекулами.

    Воду, находящуюся в организме, принято условно разделять на внеклеточную и внутриклеточную. Внеклеточная вода, в свою очередь, это интерстициальная жидкость, окружающая клетки; внутрисосудистая жидкость (плазма крови) и трансцеллюлярная жидкость, которая находится в серозных полостях и полых органах. Накопление воды в организме (гипергидратация), может сопровождаться увеличением содержания воды в межклеточном секторе (отеки), в серозных полостях (водянка) и внутри клеток (набухание). Уменьшение содержания воды в организме (дегидратация), сопровождается снижением тургора, сухости кожи и слизистых оболочек, гемоконцентрацией и гипотензией.

    Существует теория, связанная со структурированным характером воды, о так называемой информационной роли воды в живых системах и наличии у водных растворов структурной памяти.

    Несмотря на то, что вода является одним из главных компонентов человеческого организма, ее роль до настоящего времени недооценена и мало изучена как учеными, так и представителями практической медицины. Между тем, потеря человеком почти всего гликогена и жира или половины белка по своим последствиям для здоровья значат меньше, чем потеря всего 10% воды (тогда как потеря 20% воды приводит к смертельному исходу).

    Потребность человека в воде составляет 1-1,5 мл на Ккал потребляемой пищи, т. е., при энергетической ценности рациона в 2000 Ккал организму требуется от 2 до 3 литров воды в сутки. Около 300-400 мл воды ежедневно образуется в организме человека в результате различных метаболических реакций. Окисление 1 г углеводов приводит к образованию 0,6 г воды, 1,07 г липидов и 0,41 г белков.

  • Токсичность водорода

    Водород нетоксичен. Летальная доза для человека не определена.

  • Применение соединений водорода

    Соединения водорода используются в химической промышленности при получении метанола, аммиака и т.д.

    В медицине один из изотопов водорода (дейтерий) в качестве метки используется при исследованиях фармакокинетики лекарственных препаратов. Другой изотоп (тритий) применяется в радиоизотопной диагностике, при изучении биохимических реакций метаболизма ферментов и др.

    Перекись водорода H 2 O 2 является средством дезинфекции и стерилизации.