Грань пирамиды не являющаяся боковой называется. Правильная четырехугольная пирамида

Грань пирамиды не являющаяся боковой называется. Правильная четырехугольная пирамида

Понятие пирамиды

Определение 1

Геометрическая фигура, образованная многоугольником и точкой, не лежащей в плоскости, содержащей этот многоугольник, соединенной со всеми вершинами многоугольника называется пирамидой (рис. 1).

Многоугольник, из которого составлена пирамида, называется основанием пирамиды, получаемые при соединение с точкой треугольники - боковыми гранями пирамиды, стороны треугольников -- сторонами пирамиды, а общая для всех треугольников точка-- вершиной пирамиды.

Виды пирамид

В зависимости от количества углов в основании пирамиды ее можно назвать треугольной, четырехугольной и так далее (рис. 2).

Рисунок 2.

Еще один вид пирамид -- правильная пирамида.

Введем и докажем свойство правильной пирамиды.

Теорема 1

Все боковые грани правильной пирамиды являются равнобедренными треугольниками, которые равны между собой.

Доказательство.

Рассмотрим правильную $n-$угольную пирамиду с вершиной $S$ высотой $h=SO$. Опишем вокруг основания окружность (рис. 4).

Рисунок 4.

Рассмотрим треугольник $SOA$. По теореме Пифагора, получим

Очевидно, что так будет определяться любое боковое ребро. Следовательно, все боковые ребра равны между собой, то есть все боковые грани -- равнобедренные треугольники. Докажем, что они равны между собой. Так как основание -- правильный многоугольник, то основания всех боковых граней равны между собой. Следовательно, все боковые грани равны по III признаку равенства треугольников.

Теорема доказана.

Введем теперь следующее определение, связанное с понятием правильной пирамиды.

Определение 3

Апофемой правильной пирамиды называется высота её боковой грани.

Очевидно, что по теореме один все апофемы равны между собой.

Теорема 2

Площадь боковой поверхности правильной пирамиды определяется как произведение полупериметра основания на апофему.

Доказательство.

Обозначим сторону основания $n-$угольной пирамиды через $a$, а апофему через $d$. Следовательно, площадь боковой грани равна

Так как, по теореме 1, все боковые стороны равны, то

Теорема доказана.

Еще один вид пирамиды -- усеченная пирамида.

Определение 4

Если через обычную пирамиду провести плоскость, параллельную её основанию, то фигура, образованная между этой плоскостью и плоскостью основания называется усеченной пирамидой (рис. 5).

Рисунок 5. Усеченная пирамида

Боковыми гранями усеченной пирамиды являются трапеции.

Теорема 3

Площадь боковой поверхности правильной усеченной пирамиды определяется как произведение суммы полупериметров оснований на апофему.

Доказательство.

Обозначим стороны оснований $n-$угольной пирамиды через $a\ и\ b$ соответственно, а апофему через $d$. Следовательно, площадь боковой грани равна

Так как все боковые стороны равны, то

Теорема доказана.

Пример задачи

Пример 1

Найти площадь боковой поверхности усеченной треугольной пирамиды, если она получена из правильной пирамиды со стороной основания 4 и апофемой 5 путем отсечения плоскостью, проходящей через среднюю линию боковых граней.

Решение.

По теореме о средней линии получим, что верхнее основание усеченной пирамиды равно $4\cdot \frac{1}{2}=2$, а апофема равна $5\cdot \frac{1}{2}=2,5$.

Тогда, по теореме 3, получим

Продолжаем рассматривать задачи входящие в ЕГЭ по математике. Мы уже исследовали задачи, где в условии дан и требуется найти расстояние между двумя данными точками либо угол.

Пирамида - это многогранник, основание которого является многоугольником, остальные грани - треугольники, при чём они имеют общую вершину.

Правильная пирамида — это пирамида в основании которой лежит правильный многоугольник, а его вершина проецируется в центр основания.

Правильная четырехугольная пирамида — снованием является квадрат.Вершина пирамиды проектируется в точку пересечения диагоналей основания (квадрата).


ML - апофема
∠MLO - двугранный угол при основании пирамиды
∠MCO - угол между боковым ребром и плоскостью основания пирамиды

В этой статье мы с вами рассмотрим задачи на решение правильной пирамиды. Требуется найти какой-либо элемент, площадь боковой поверхности, объём, высоту. Разумеется, необходимо знать теорему Пифагора, формулу площади боковой поверхности пирамиды, формулу для нахождения объёма пирамиды.

В статье « » представлены формулы, которые необходимы для решения задач по стереометрии. Итак, задачи:

SABCD точка O - центр основания, S вершина, SO = 51, AC = 136. Найдите боковое ребро SC .

В данном случае в основании лежит квадрат. Это означает, что диагонали AC и BD равны, они пересекаются и точкой пересечения делятся пополам. Отметим, что в правильной пирамиде высота опущенная из её вершины проходит через центр основания пирамиды. Таким образом, SO является высотой, а треугольник SOC прямоугольный. Тогда по теореме Пифагора:

Как извлекать корень из большого числа .

Ответ: 85

Решите самостоятельно:

В правильной четырехугольной пирамиде SABCD точка O - центр основания, S вершина, SO = 4, AC = 6. Найдите боковое ребро SC .

В правильной четырехугольной пирамиде SABCD точка O - центр основания, S вершина, SC = 5, AC = 6. Найдите длину отрезка SO .

В правильной четырехугольной пирамиде SABCD точка O - центр основания, S вершина, SO = 4, SC = 5. Найдите длину отрезка AC .

SABC R - середина ребра BC , S - вершина. Известно, что AB = 7, а SR = 16. Найдите площадь боковой поверхности.

Площадь боковой поверхности правильной треугольной пирамиды равна половине произведения периметра основания на апофему (апофема это высота боковой грани правильной пирамиды, проведённая из её вершины):

Или можно сказать так: площадь боковой поверхности пирамиды равна сумме площадей трёх боковых граней. Боковыми гранями в правильной треугольной пирамиде являются равные по площади треугольники. В данном случае:

Ответ: 168

Решите самостоятельно:

В правильной треугольной пирамиде SABC R - середина ребра BC , S - вершина. Известно, что AB = 1, а SR = 2. Найдите площадь боковой поверхности.

В правильной треугольной пирамиде SABC R - середина ребра BC , S - вершина. Известно, что AB = 1, а площадь боковой поверхности равна 3. Найдите длину отрезка SR .

В правильной треугольной пирамиде SABC L - середина ребра BC , S - вершина. Известно, что SL = 2, а площадь боковой поверхности равна 3. Найдите длину отрезка AB .

В правильной треугольной пирамиде SABC M . Площадь треугольника ABC равна 25, объем пирамиды равен 100. Найдите длину отрезка MS .

Основание пирамиды - равносторонний треугольник . Поэтому M является центром основания, а MS - высотой правильной пирамиды SABC . Объем пирамиды SABC равен: осмотреть решение

В правильной треугольной пирамиде SABC медианы основания пересекаются в точке M . Площадь треугольника ABC равна 3, MS = 1. Найдите объем пирамиды.

В правильной треугольной пирамиде SABC медианы основания пересекаются в точке M . Объем пирамиды равен 1, MS = 1. Найдите площадь треугольника ABC .

На этом закончим. Как видите, задачи решаются в одно-два действия. В будущем рассмотрим с вами другие задачи из данной части, где даны тела вращения, не пропустите!

Успехов вам!

С уважением, Александр Крутицких.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

Пирамида. Усеченная пирамида

Пирамидой называется многогранник, одна из граней которого многоугольник (основание ), а все остальные грани – треугольники с общей вершиной (боковые грани ) (рис. 15). Пирамида называется правильной , если ее основанием является правильный многоугольник и вершина пирамиды проектируется в центр основания (рис. 16). Треугольная пирамида, у которой все ребра равны, называется тетраэдром .



Боковым ребром пирамиды называется сторона боковой грани, не принадлежащая основанию Высотой пирамиды называется расстояние от ее вершины до плоскости основания. Все боковые ребра правильной пирамиды равны между собой, все боковые грани – равные равнобедренные треугольники. Высота боковой грани правильной пирамиды, проведенная из вершины, называется апофемой . Диагональным сечением называется сечение пирамиды плоскостью, проходящей через два боковых ребра, не принадлежащих одной грани.

Площадью боковой поверхности пирамиды называется сумма площадей всех боковых граней. Площадью полной поверхности называется сумма площадей всех боковых граней и основания.

Теоремы

1. Если в пирамиде все боковые ребра равнонаклонены к плоскости основания, то вершина пирамиды проектируется в центр окружности описанной около основания.

2. Если в пирамиде все боковые ребра имеют равные длины, то вершина пирамиды проектируется в центр окружности описанной около основания.

3. Если в пирамиде все грани равнонаклонены к плоскости основания, то вершина пирамиды проектируется в центр окружности вписанной в основание.

Для вычисления объема произвольной пирамиды верна формула:

где V – объем;

S осн – площадь основания;

H – высота пирамиды.

Для правильной пирамиды верны формулы:

где p – периметр основания;

h а – апофема;

H – высота;

S полн

S бок

S осн – площадь основания;

V – объем правильной пирамиды.

Усеченной пирамидой называется часть пирамиды, заключенная между основанием и секущей плоскостью, параллельной основанию пирамиды (рис. 17). Правильной усеченной пирамидой называется часть правильной пирамиды, заключенная между основанием и секущей плоскостью, параллельной основанию пирамиды.

Основания усеченной пирамиды – подобные многоугольники. Боковые грани – трапеции. Высотой усеченной пирамиды называется расстояние между ее основаниями. Диагональю усеченной пирамиды называется отрезок, соединяющий ее вершины, не лежащие в одной грани. Диагональным сечением называется сечение усеченной пирамиды плоскостью, проходящей через два боковых ребра, не принадлежащих одной грани.


Для усеченной пирамиды справедливы формулы:

(4)

где S 1 , S 2 – площади верхнего и нижнего оснований;

S полн – площадь полной поверхности;

S бок – площадь боковой поверхности;

H – высота;

V – объем усеченной пирамиды.

Для правильной усеченной пирамиды верна формула:

где p 1 , p 2 – периметры оснований;

h а – апофема правильной усеченной пирамиды.

Пример 1. В правильной треугольной пирамиде двугранный угол при основании равен 60º. Найти тангенс угла наклона бокового ребра к плоскости основания.

Решение. Сделаем рисунок (рис. 18).


Пирамида правильная, значит в основании равносторонний треугольник и все боковые грани равные равнобедренные треугольники. Двугранный угол при основании – это угол наклона боковой грани пирамиды к плоскости основания. Линейным углом будет угол a между двумя перпендикулярами: и т.е. Вершина пирамиды проектируется в центре треугольника (центр описанной окружности и вписанной окружности в треугольник АВС ). Угол наклона бокового ребра (например SB ) – это угол между самим ребром и его проекцией на плоскость основания. Для ребра SB этим углом будет угол SBD . Чтобы найти тангенс необходимо знать катеты SO и OB . Пусть длина отрезка BD равна 3а . Точкой О отрезок BD делится на части: и Из находим SO : Из находим:

Ответ:

Пример 2. Найти объем правильной усеченной четырехугольной пирамиды, если диагонали ее оснований равны см и см, а высота 4 см.

Решение. Для нахождения объема усеченной пирамиды воспользуемся формулой (4). Чтобы найти площади оснований необходимо найти стороны квадратов-оснований, зная их диагонали. Стороны оснований равны соответственно 2 см и 8 см. Значит площади оснований и Подставив все данные в формулу, вычислим объем усеченной пирамиды:

Ответ: 112 см 3 .

Пример 3. Найти площадь боковой грани правильной треугольной усеченной пирамиды, стороны оснований которой равны 10 см и 4 см, а высота пирамиды 2 см.

Решение. Сделаем рисунок (рис. 19).


Боковая грань данной пирамиды является равнобокая трапеция. Для вычисления площади трапеции необходимо знать основания и высоту. Основания даны по условию, остается неизвестной только высота. Ее найдем из где А 1 Е перпендикуляр из точки А 1 на плоскость нижнего основания, A 1 D – перпендикуляр из А 1 на АС . А 1 Е = 2 см, так как это высота пирамиды. Для нахождения DE сделаем дополнительно рисунок, на котором изобразим вид сверху (рис. 20). Точка О – проекция центров верхнего и нижнего оснований. так как (см. рис. 20) и С другой стороны ОК – радиус вписанной в окружности и ОМ – радиус вписанной в окружности:

MK = DE .

По теореме Пифагора из

Площадь боковой грани:


Ответ:

Пример 4. В основании пирамиды лежит равнобокая трапеция, основания которой а и b (a > b ). Каждая боковая грань образует с плоскостью основания пирамиды угол равный j . Найти площадь полной поверхности пирамиды.

Решение. Сделаем рисунок (рис. 21). Площадь полной поверхности пирамиды SABCD равна сумме площадей и площади трапеции ABCD .

Воспользуемся утверждением, что если все грани пирамиды равнонаклонены к плоскости основания, то вершина проектируется в центр вписанной в основание окружности. Точка О – проекция вершины S на основание пирамиды. Треугольник SOD является ортогональной проекцией треугольника CSD на плоскость основания. По теореме о площади ортогональной проекции плоской фигуры получим:


Аналогично и значит Таким образом задача свелась к нахождению площади трапеции АВСD . Изобразим трапецию ABCD отдельно (рис.22). Точка О – центр вписанной в трапецию окружности.


Так как в трапецию можно вписать окружность, то или Из по теореме Пифагора имеем

Инструкция

В том случае, если в основании пирамиды лежит квадрат, известна длина его диагонали, а также длина ребра этой пирамиды , то высоту этой пирамиды можно выразить из теоремы Пифагора, ведь треугольник, который образован ребром пирамиды , и половиной диагонали в основании - это прямоугольный треугольник.
Теорема Пифагора гласит, что квадрат гипотенузы в прямоугольном по величине равен сумме квадратов его катетов(a² = b² + c²). Грань пирамиды - гипотенуза, один из катетов - половина диагонали квадрата. Тогда длина неизвестного катета (высоты) находится по формулам:
b² = a² - c²;
c² = a² - b².

Чтобы обе ситуации были максимально ясны и понятны, можно рассмотреть пару .
Пример 1: Площадь основания пирамиды 46 см², ее объем равен 120 см³. Исходя из этих данных, высота пирамиды находится так:
h = 3*120/46 = 7.83 см
Ответ: высота данной пирамиды составит, приблизительно, 7.83 см
Пример 2: У пирамиды , в основании которого лежит многоугольник - квадрат, его диагональ равна 14 см, длина ребра составляет 15 см. Согласно этим данным, чтобы найти высоту пирамиды , требуется воспользоваться следующей формулой (которая как следствие из теоремы Пифагора):
h² = 15² - 14²
h² = 225 - 196 = 29
h = √29 см
Ответ: высота данной пирамиды составляет √29 см или, приблизительно, 5.4 см

Обратите внимание

Если в основании пирамиды находится квадрат или иной правильный многоугольник, то данную пирамиду можно называть правильной. Такая пирамида обладает рядом свойств:
ее боковые ребра равны;
грани ее - равнобедренные треугольники, которые равны между собой;
около такой пирамиды можно описать сферу, а также и вписать ее.

Источники:

  • Правильная пирамида

Пирамидой называют фигуру, в основании которой лежит многоугольник, при этом её грани представляют собой треугольники с общей для всех вершиной. В типовых задачах часто требуется построить и определить длину перпендикуляра, проведённого из вершины пирамиды к плоскости её основания. Длина этого отрезка называется высотой пирамиды .

Вам понадобится

  • - линейка
  • - карандаш
  • - циркуль

Инструкция

Для выполнения постройте пирамиду в соответствии с условием задачи. Например, для построения правильного тетраэдра необходимо начертить фигуру так, чтобы все 6 рёбер были равны между собой. Если требуется построить высоту четырёхугольной , то равными должны быть лишь 4 ребра основания. Тогда рёбра боковых граней можете строить неравными с рёбрами многоугольника. Назовите пирамиду, обозначив все вершины буквами латинского . Например, для пирамиды с треугольником в основании можно выбрать A, B, C (для основания), S (для вершины). Если в условии заданы конкретные размеры рёбер, то при построении фигуры исходите из данных величин.

Для начала условно подберите при помощи циркуля , касающуюся изнутри всех рёбер многоугольника. Если пирамида , то точка (назовите её, например, Н) на основании пирамиды , в которую опускается высота, должна соответствовать центру окружности вписанной в правильный основания пирамиды . Центру будет соответствовать точка, равноудалённая от любой другой точки на окружности. Если соединить вершину пирамиды S с центром окружности H, то отрезок SH и будет высотой пирамиды . При этом помните, что окружность можно вписать в четырёхугольник, суммы противоположных сторон которого одинаковы. Это касается квадрата и ромба. При этом точка H будет лежать четырёхугольника. Для любого треугольника есть возможность вписать и описать окружность.

Чтобы построить высоту пирамиды , воспользуйтесь циркулем для рисования окружности, а затем при помощи линейки соедините её центр H с вершиной S. SH – искомая высота. Если в основании пирамиды SABC неправильная фигура, то высота будет соединять вершину пирамиды с центром окружности, в которую вписан многоугольник основания. Все вершины многоугольника лежат на такой окружности. При этом данный отрезок будет перпендикуляром к плоскости основания пирамиды . Описать окружность вокруг четырёхугольника можно, если сумма противоположных углов равна 180о. Тогда центр такой окружности будет лежать на пересечении диагоналей соответствующих