Эжектор низкого давления схемы подключения вентиляции. Эжекторы низкого высокого давления эжекционные системы аварийной вентиляции выполнил. Опыт
 проектирования естественно-механической вентиляции в жилых зданиях с теплыми
 чердаками

Эжектор низкого давления схемы подключения вентиляции. Эжекторы низкого высокого давления эжекционные системы аварийной вентиляции выполнил. Опыт проектирования естественно-механической вентиляции в жилых зданиях с теплыми чердаками

Механическая общеобменная вентиляция может быть приточной, вытяжной и приточно-вытяжной, с рециркуляцией и без рециркуляции. При этой системе вентиляции центробежные (рис. 5, а), осевые вентиляторы (рис. 5,6) или эжекторные установки (рис. 5, в), крышные вентиляторы (рис. 5, г, д) перемещают воздух по воздухопроводам с ответвлениями, имеющими насадки и заслонки для регулирования притока или удаления воздуха.

Вентиляторы применяют в приточных, вытяжных и приточно-вытяжных системах, эжекторные установки - в основном в вытяжных системах вентиляции.

Эжекторные установки используют в производственных помещениях, в которых вьщеляются взрывоопасные пары и газы и где установка вентилятора обычного типа, вызывающего при повреждении частей вентилятора искрение и взрыв, не допускается, например при удалении загрязнений из отделений для зарядки аккумуляторов, из окрасочных кабин при отсутствии гидроочистки.

Приведение в движение воздуха эжекцией заключается в том, что в трубу вставляют одно или несколько сопл, в них под давлением подают воздух из компрессора или вентилятора, пар или воду, которые увлекают за собой загрязненный воздух. КПД эжекторной установки будет зависеть от ее конструктивных особенностей.

Назначение приточных систем вентиляции - возмещать воздух, удаляемый местными отсосами и пневмотранспортом в цехах и отделениях (станочных, отделочных, сборочных, древесностружечных плит и др.) и расходуемый на технологические нужды.

При приточной общеобменной системе вентиляции (рис. 6, а) воздухоприемник для забора чистого воздуха, который подается в помещение вентилятором, устанавливают вне здания. Воздух забирают на высоте от земли не менее 2,5 м. Очищенный и подогретый до необходимой температуры воздух в помещении распределяется по системе каналов - воздуховодов.

Воздух подается в рабочую зону (в пространство от уровня пола до уровня дыхания 1,8...2 м) с возможно малыми скоростями. Нельзя подавать воздух через зоны, в которых он загрязнен.

Вытяжная общеобменная система вентиляции (рис. 6, б) характеризуется тем, что через сеть воздуховодов 13 и 12 загрязненный воздух удаляется вентилятором 11. Чистый воздух в этом случае подсасывается естественным путем через неплотности дверей, окон, фонарей, щели, поры строительных конструкций. Вытяжные отверстия воздуховодов располагают на различной высоте, которую устанавливают в зависимости от назначения помещений и плотности удаляемых загрязнений. Например, если удаляют загрязнения, которые тяжелее воздуха (пары фенола, бензина), приемники пара или газа располагают у пола, а если легче воздуха - у потолка. В соответствии с СН 245-71, СНиП П-33-75, ГОСТ 12.4.021-75 и пожарными нормами не разрешается объединять в одну общую вытяжную установку отсосы легкоконденсирующихся паров и газов, а также отсосы веществ, которые при смешении могут создавать ядовитую воспламеняющуюся или взрывоопасную механическую смесь или химические соединения. Например, не допускается совмещать отсосы от пневмотранспортных установок с отсосами от окрасочных и сушильных камер; от окрасочных кабин, когда в одной из кабин применяются нитроцеллюлозные, а в другой полиэфирные лаки. Запыленный или загрязненный ядовитыми парами или газами воздух перед выбрасыванием в атмосферу очищают и обезвреживают в специальных установках.

Приточно-вытяжная система вентиляции без рециркуляции (рис. 6, в) состоит из приточной и вытяжной системы, одновременно подающих чистый воздух и удаляющих загрязненный (предварительно очищенный) в атмосферу. Такая система вентиляции считается наилучшей при условии, когда воздух, удаляемый вытяжными общеобменными и местными системами вентиляции, будет компенсирован приточной системой вентиляции.

Приточно-вытяжная система вентиляции в сообщающихся помещениях должна быть устроена таким образом, чтобы исключалась возможность поступления воздуха из помещений с большим выделением вредностей или с наличием взрывоопасных газов, паров и пыли в помещениях, где этих вредностей меньше или нет.

Вентиляция с рециркуляцией (рис. 6,г) представляет собой замкнутую приточно-вытяжную вентиляцию. Воздух, отсасываемый вытяжной системой, вторично подается в помещение с помощью приточной вентиляции. Рециркулируемый воздух частично пополняется свежим. Не допускается применять рециркуляцию в помещениях с токсическими пожаро- и взрывоопасными загрязнениями воздуха.

Во всех системах вентиляции воздухозаборное устройство устанавливают с учетом розы ветров (с наветренной стороны к выбрасываемым шахтам), но не ближе 10...20 м от выбрасывающих отверстий. Труба, через которую использованный воздух выпускают в атмосферу, должна быть расположена не менее чем на 1 м выше конька крыши.

Для покрасочной камеры очень важным является микроклимат внутри бокса. Чтобы специалисту можно было комфортно работать, а краска без проблем ложилась на поверхность, требуется установить такую систему, которая сможет удалять отработанные потоки воздуха из помещения и направлять их в выходные каналы. Суть работы эжектора заключается в том, что чистый воздух, подаваемый вентиляционную камеру, перемешивается с взрывоопасными парами и вредными примесями. В результате смена отработанного воздуха выполняется намного быстрее.

Устройство эжекторов

Чтобы понимать устройство эжекторов, следует разобраться в том, как происходит удаление уже отработанного воздуха в покрасочном боксе. Для максимально эффективного удаления отработанного потока воздуха, используются эжекторные установки. Конструкция изготовляется из листовой стали, толщина материала составляет 1,2 мм. Монтаж выполняется при помощи сварки, хотя использоваться могут и разъемные устройства.

Что касается отдельных элементов, то выделить можно следующее:

  1. Есть сопло, которое предназначено для преобразование потенциальной энергии потока в кинетическую. На практике это нужно для создания высокоскоростной струи.
  2. Пассивный воздушный поток засасывается за счет создания вакуума. Отработанный воздух попадает в приемную камеру.
  3. Рабочая камера эжектора нужно для смешения активного и пассивного потока, где присутствуют вредные примеси и опасные для человека газы. В результате энергообмена получается один поток с одинаковым по силе напором.
  4. Поток попадает в диффузор, где происходит одновременное снижение скорости и увеличение давления.

Принцип работы

Зависит от многих составляющих - от герметичности камеры в целом, от фильтров, за чистотой которых нужно следить, от вентиляторов. Но все перечисленные элементы будут бесполезными, если эжектор не будет работать так, как это нужно. Все держится на потоке рабочей среды, который поступает в приемную камеру с большой скоростью. Благодаря такой высокой скорости потока, создается вакуум, затягивающий отработанный воздух.

Дальнейшее действие механизма было описано при разборе составных частей эжектора. В камере смешивания сталкиваются два потока, один из которых содержит вредные примеси. После этого поток попадает в диффузор и уходит по вытяжным каналам.

Особенности установки

Основная проблема при установке системы вентиляции, и эжекторов в частности, не в самом процессе монтажа, а в грамотных расчетах. Покрасочную камеру нужно грамотно проектировать, чтобы установленная система вентиляции справлялась с поставленной нагрузкой. Признаком правильной проектировки является превышение объемов поступающего чистого воздуха в сравнении с потоками, уходящими через вытяжные отверстия.

В процессе проектирование нужно понять, каким будет воздушный обмен. На этот показатель влияет и размеры покрасочного бокса, и количество одновременно работающего персонала. По итогу специалист выведет значение кратности обмена, то есть, количество полной смены объемов воздуха за определенное время. При выполнении покраски больших изделий, как того же автомобиля, нужно придерживаться показателя кратности в сто раз.

Также потребуется грамотно провести выполнение расчетов сечений воздуховодов. Учитывая необходимость работы с воздушными потоками, имеющими взрывоопасные примеси, нужно устанавливать воздуховоды из жароустойчивых материалов.

Специфика обслуживания

Обслуживание эжекторов выполняется в комплексе, вместе с обслуживанием всей системы вентиляции в целом. Под обслуживанием принято понимать регулярный осмотр фильтров, которые забиваются частицами пыли и остатками краски. Чистка фильтров выполняется каждые 250 часов работы, но только один раз. По истечение 500 рабочих часов фильтр заменяется на новый.

Что касается эжекторов, то они тоже подлежать очистке. Наиболее подвержен загрязнению именно диффузор. Для его очистки принято использовать небольшой пластиковый стержень. При обслуживании эжектора нельзя использовать предметы с острыми кромками. Они могут повредить поверхность диффузора, нарушив его герметичность.

Про необходимость выбора качественной эжекторной установки нужно знать, что от ее работы полностью зависит и качество окраски поверхностей. Недостатки системы отразятся на качестве выполняемых работ. Если нет возможности самостоятельно проконтролировать качество элементов и правильность их установки, то следует обратиться за услугами в сертифицированные компании, которые специализируются в этой сфере - таким образом можно получить гарантию того, что все работы будут произведены правильно.

Для подбора центробежных вентиляторов, кроме производительности и давления, необходимо выбрать их конструктивное исполнение.

Полное давление Рп, развиваемое вентилятором, расходуется на преодоление сопротивлений во всасывающем и нагнетательном воздуховодах, возникающих при перемещении воздуха:

РП = ΔРвс+ ΔРн = ΔР,

Где ΔРвс и ΔРн — потери давления во всасывающем и нагнетательном воздуховодах; ΔР — суммарные потери давления.

Эти потери давления состоят из потерь давления на трение (за счет шероховатости воздуховодов) и в местных сопротивлениях (повороты, изменения сечения, фильтры, калориферы, и т. д.).

Потери ДР (кгс/м2) определяют суммированием потерь давления ΔР, на отдельных расчетных участках:

где ΔРТрi и ΔРмсi соответственно потери давления на трение и в местных сопротивлениях на расчетном участке воздуховода; ΔРуд — потери давления на трение на 1 пог. м. длины; l — длина расчетного участка воздуховода, м; Σζ — сумма коэффициентов местных сопротивлений на расчетном участке; v — скорость воздуха в воздуховоде, м/с; р — плотность воздуха, кг/м3.

Величины ΔРуд и ζ приводятся в справочниках.

Порядок расчета вентиляционной сети следующий.

1. Выбирают конфигурацию сети в зависимости от размещения помещений, установок, оборудования, которые должна обслуживать вентиляционная система.

2. Зная требуемый расход воздуха на отдельных участках воздуховодов, определяют их поперечные размеры, исходя из допустимых скоростей движения воздуха (порядка 6—10 м/с).

3. По формуле (3) рассчитывают сопротивление сети, причем за расчетную принимают наиболее протяженную магистраль.

4. По каталогам выбирают вентилятор и электродвигатель.

5. Если сопротивление сети оказалось слишком большим, размеры воздуховодов увеличивают и производят перерасчет сети.

Зная, какую производительность и полное давление должен развивать вентилятор, производят выбор вептилятора по его аэродинамической характеристике.

Такая характеристика вентилятора графически выражает связь между основными параметрами — производительностью, давлением, мощностью и к. п. д. при определенных скоростях вращения п, об/мин. Например, требуется подобрать вентилятор производительностью L = 6,5 тыс. м3/ч при Р = 44 кгс/м2. Для выбранного центробежного вентилятора Ц4-70 № 6 требуемый режим работы будет соответствовать точке А (рис. 8, а). По этой точке находят скорость вращения колеса п — 900 об/мин и к. п. д. η = 0,8.

Наиболее важна зависимость между давлением и производительностью — так называемая напорная характеристика вентилятора Р — L. Если на эту характеристику наложить характеристику сети (зависимость сопротивления от расхода воздуха) (рис. 8, б), то точка пересечения этих кривых (рабочая точка) определит давление и производительность вентилятора при работе в данной сети. При увеличении сопротивления сети, что может произойти, например при засорении фильтров, рабочая точка сместится вверх и вентилятор будет подавать воздуха меньше, чем это нужно (L2 < L1).

При выборе типа и номера центробежных вентиляторов необходимо руководствоваться тем, что вентилятор должен иметь наиболее высокий к. п. д., относительно небольшую скорость вращения (u=πDn/60), а также чт°бы скорость вращения колеса позволяла осуществить соединение с электродвигателем на одном валу.

Рис. 8. Диаграммы расчета вентиляционной сети: а — аэродинамическая характеристика вентилятора; б — работа вентилятора в сети

В тех случаях, когда эксплуатируемый вентилятор не обеспечивает необходимой производительности, можно ее увеличить, помня, что производительность вентилятора прямо пропорциональна скорости вращения колеса, полное давление — квадрату скорости вращения, а потребляемая мощность — кубу скорости вращения:

Разновидностью центробежных вентиляторов являются так называемые диаметральные вентиляторы (см. рис. 7, г). Эти вентиляторы имеют широкие колеса и их производительность выше, чем у центробежных вентиляторов, но к. п. д. ниже вследствие возникновения внутренних циркуляционных потоков.

Установочная мощность электродвигателя для вентилятора (кВт) рассчитывается по формуле

где L — производительность вентилятора, м3/ч; Р — полное давление вентилятора, кгс/м2; ηв — к. п. д. вентилятора (принимается по

характеристике вентилятора); ηп — к. п. д. привода, который при плоскоременной передаче равен 0,9; при клиноременном — 0,95; при непосредственной установке колеса на валу электродвигателя — 1; при установке колеса через муфту — 0,98; к — коэффициент запаса (к = 1,05 1,5).

Эжекторы применяют в вытяжных системах в тех случаях, когда необходимо удалить очень агрессивную среду, пыль, способную к взрыву не только от удара, но и от трения или легко воспламеняющиеся и взрывоопасные газы (ацетилен, эфир и т. д.).

Описание:

Естественно-механические системы вентиляции эжекторного типа являются универсальным решением для жилых зданий, обеспечивая требуемый воздухообмен в квартирах вне зависимости от погодных условий в любое время года. В публикуемой статье приводятся данные по расчету и конструированию эжекторных установок для таких систем.

Опыт проектирования естественно-механической вентиляции в жилых зданиях с теплыми чердаками

Расчет эжекторных вытяжных вентиляционных установок низкого давления с дефлекторами

За основу методики расчета эжекторных установок приняты формулы для эжекторных систем аварийной вентиляции, приведенные в справочнике С. А. Рысина . Согласно табл. 1 для зданий выше 12 этажей следует применять установки с двумя дефлекторами и одним вентилятором на 1 секцию.

На рис. 2 приведена схема вентиляции с двумя дефлекторами. Показанные на рисунке глушители перед осевым вентилятором могут быть отменены при хорошей шумовой характеристике вентилятора. В качестве выпрямителя потока после вентилятора целесообразно устанавливать круглые шумоглушители с центральной пластиной длиной 1 000 мм (поставка «Венткомплект-Н»).

Следует отметить на рис. 1 три размера L 1 , L 2 и L 3 , которые следует соблюдать, а именно:

– длина L 1 принимается не менее 1,0 м для исключения обратных потоков воздуха;

– длина L 2 определяется расчетом и должна быть не менее начального участка струи первичного воздуха до полного ее распада перед срезом нижнего диска дефлектора.

Длина (L 2) участка смешения двух потоков воздуха в стволе дефлектора (D 3) определена по формуле для стесненной транзитной струи :

L 2 = 1,785 х D 3 – 1,9 x D 2(СОПЛА) .

Полученные значения L 2 равны 0,8–1,0–1,1–1,2 м для соответствующих диаметров дефлекторов: Ø630–800–900–1 000.

Конструктивная высота шахт-дефлекторов превышает указанные расстояния. Важным параметром, как представляется, может быть относительный диаметр D (L2) смешанной струи на расстоянии L 2 от среза сопла перед выходом из дефлектора. Эти величины определены также по формуле в книге В. Ф. Дроздова , для стесненной транзитной струи: D (L2) = D 2(СОПЛА) х (1 + 7,52 x a x L2 / D 2(СОПЛА)), м, где а – опытный коэффициент турбулентности, равный 0,08.

Полученные значения D (L2) равны 0,64–0,82–0,93–1,0 м, т. е. соответствуют диаметрам ствола дефлекторов 630–800–900–1 000 мм, и, вероятно, это будет способствовать уменьшению потерь на выходе в атмосферу.

В 22-этажной секции (в доме К-4 на Мичуринском проспекте) в марте 2008 года были выполнены замеры расходов и скоростей воздуха в венткамере с целью сравнения их с проектными параметрами.

С учетом полученных результатов можно сделать выводы о том, что:

1. При наружной температуре 5 °С и температуре на чердаке 13 °С система работала удовлетворительно в естественном режиме. На рис. 3 указаны результаты замеров и проектные величины, которые практически совпадают (проектный расход на секцию L 3 = 11 000 м 3 /ч, по 500 м 3 /ч на этаж). Выявилась допустимость скоростей в стволе дефлектора V 3 = 2,7 м/с и в кольцевом сечении ствола V 2 = 3,2 м/с. Определилась часть естественной вытяжки через неработающий осевой вентилятор ~15 % от расчетной. Подтвердилась работоспособность системы в естественном режиме при расчетной t НАР = 5 °С.

2. Замеры при включенном вентиляторе показаны на рис. 4:

– производительность вентилятора (13 300 м 3 /ч) превысила принятую по характеристике в 2 раза, и на 20 % увеличился расчетный расход на секцию. Можно предположить, что осевой вентилятор работал совместно с гравитационным напором, который для секции высотой 82 м до дефлектора равен около 50 Па. Следует иметь в виду эти результаты и предусматривать регуляторы скорости вентиляторов для приведения его характеристики в заданный режим;

– большие скорости на выходе из сопла (26,4 м/с) не способствовали повышению коэффициента эжекции, а наоборот, он был b = 0,28 вместо проектного b = 0,80, вероятно, из-за большой скорости на выходе из дефлектора и торможения эжекции в стволе шахты;

– однако выявилась еще одна разновидность «гибридной вентиляции» при подаче полного объема вытяжки, но с повышенным расходом электроэнергии.

3. На рис. 5 показаны результаты замеров, которые были получены путем искусственного дросселирования входного конфузора вентилятора до 35 % его открытого сечения и при этом:

– производительность вентилятора была снижена до проектной, и все другие величины также приблизились к заданным, в том числе основной показатель – коэффициент эжекции b = 0,77–0,8.

Полученные результаты замеров подтвердили основное:

– предположение о возможности использования расчетных формул, которые приняты применительно к системам аварийной вентиляции эжекторного типа;

– возможность принятой конструкции вытяжного устройства удовлетворительно работать в двух режимах – естественном и механическом.

4. Было сделано 2 замера на вытяжных диффузорах вентблоков кухонь 22-го и 1-го этажей при открытых сечениях Ø120 мм и получены расходы воздуха:

– на 22-м этаже L = 83 м 3 /ч при V = 2,14 м/с;

– на 1-м этаже:

а) L = 50 м 3 /ч, V = 1,28 м/с при закрытых окнах и входной двери;

б) L = 94 м 3 /ч, V = 2,37 м/с при открытой двери в коридор.

При установке диффузоров (типа ДПУ-М125) на место объемы вытяжки должны будут равны ≈ 60 м 3 /ч при D Р = 3,0–4,0 Па.

Выводы

1. Предложенная естественно-механическая система вытяжной вентиляции эжекторного типа является универсальным решением для жилых зданий массового строительства, а также позволяет просто выполнить реконструкцию большого количества существующих зданий с теплыми чердаками.

2. Приведенные в настоящей статье данные по расчету и конструированию эжекторных установок проверены натурными замерами и являются достаточными для проектирования таких систем вентиляции в зданиях с теплыми чердаками.

3. Данные системы вентиляции малозатратны и экономичны в эксплуатации по расходу электроэнергии.

В разработке проектов жилых зданий с естественно-механической вентиляцией участвовали инженеры Мастерской № 11, ГУП «Моспроект-2 им. М. В. Посохина»: А. Е. Савенков, главный специалист; Н. Г. Денисова, начальник группы; А. В. Медунов, ведущий инженер.