Что быстрее скорость света или скорость звука? Преодолеть скорость света возможно - ученые

Что быстрее скорость света или скорость звука? Преодолеть скорость света возможно - ученые

Но оказалось, что можно; теперь считают, что мы никогда не сомжем путешествовать быстрее света... ". Но на самом деле это неправда, что кто-то когда-то считал, что двигаться быстрее звука невозможно. Задолго до того, как появились сверхзвуковые самолеты уже было известно, что быстрее звука летят пули. Реально же речь шла о том, что невозможен управляемый сверхзвуковой полет, и ошибка была в этом. СС движение - это совсем другое дело. С самого начала было ясно, что сверхзвуковому полету препятствуют технические проблемы, которые надо было просто решить. Но совершенно неясно, можно ли когда-нибудь будет решить проблемы, препятствующие СС движению. Теор ия относительности может много чего сказать на этот счет. Если будет возможно СС путешествие или даже передача сигнала, то будет нарушена причинность, а из этого последуют совершенно невероятные выводы.

Сначала мы обсудим простые случаи СС движения. Мы упоминаем их не потому, что они интересны, а потому, что они снова и снова всплывают в обсуждениях СС движения и потому с ними приходится иметь дело. Потом мы обсудим то, что мы считаем сложными случаями СС движения или общения и рассмотрим некоторые доводы против них. Наконец, мы рассмотрим наиболее серьезные предположения о настоящем СС движении.

Простое СС движение

1. Явление черенковского излучения

Один способ двигаться быстрее света состоит в том, чтобы сперва замедлить сам свет! :-) В вакууме свет летит со скоростью c , и эта величина является мировой постоянной (см. вопрос Постоянна ли скорость света), а в более плотной среде вроде воды или стекла - замедляется до скорости c/n , где n - это показатель преломления среды (1,0003 у воздуха; 1,4 у воды). Поэтому частицы могут двигаться в воде или воздухе быстрее, чем там движется свет. В результате возникает излучение Вавилова-Черенкова (см. вопрос ).

Но когда мы говорим о СС движении, мы, конечно, имеем в виду превышение над скоростью света в вакууме c (299 792 458 м/с). Поэтому явление Черенкова не может считаться примером СС движения.

2. С третьей стороны

Если ракета А летит от меня со скоростью 0,6c на запад, а другая Б - от меня со скоростью 0,6c на восток, то тогда общее расстояние между А и Б в моей системе отсчета увеличивается со скоростью 1,2c . Таким образом, видимая относительная скорость, большая c, может наблюдаться "с третьей стороны".

Однако такая скорость - это не то, что мы обычно понимаем под относительной скоростью. Настоящая скорость ракеты А относительно ракеты Б - это та скорость роста расстояния между ракетами, которую наблюдает наблюдатель в ракете Б . Две скорости надо сложить по релятиви стской формуле сложения скоростей (см. вопрос Как надо складывать скорости в частной относительности). В данном случае относительная скорость получается примерно 0,88c , то есть, не является сверхсветовой.

3. Тени и зайчики

Подумайте, с какой скоростью может двигаться тень? Если Вы создадите на далекой стене тень от своего пальца от близкой лампы, а потом пальцем пошевелите, то тень задвигается гораздо быстрее пальца. Если палец будет смещаться параллельно стене, то скорость тени будет в D/d раз больше скорости пальца, где d - расстояние от пальца до лампы, а D - расстояние от лампы до стены. А может получиться и еще большая скорость, если стена будет расположена под углом. Если стена расположена очень далеко, то движение тени будет отставать от движения пальца, так как свет должен будет еще долететь от пальца до стены, но все равно скорость движения тени будет во столько же раз больше. То есть, скорость движения тени не ограничена скоростью света.

Кроме теней быстрее света могут двигаться и зайчики, например, пятнышко от лазерного луча, направленного на Луну . Зная, что расстояние до Луны 385 000 км., попробуйте рассчитать скорость движения зайчика если слегка поводить лазером. Еще можете подумать о морской волне, косо ударяющей о берег. С какой скоростью может двигаться точка, в которй волна разбивается?

Подобные вещи могут происходить и в природе. Например, световой луч от пульсара может прочесывать облако пыли. Яркая вспышка порождает расширяющееся оболочку из света или другого излучения. Когда она пересекает поверхность, то создается световое кольцо, увеличивающееся быстрее скорости света. В природе такое встречается, когда электромагнитный импульс от молнии достигает верхних слоев атмосферы .

Все это были примеры вещей, движущихся быстрее света, но которые не являлись физическими телами. При помощи тени или зайчика нельзя передать СС сообщение, так что и общение быстрее света не получается. И опять-таки, это, видимо, не то, что мы хотим понимать под СС движением, хотя становится понятно, насколько трудно определить, что именно нам нужно (см. вопрос Сверхсветовые ножницы).

4. Твердые тела

Если взять длинную твердую палку и толкнуть один ее конец, задвигается ли другой конец сразу же, или нет? Нельзя ли таким образом осуществить СС передачу сообщения?

Да, это было бы можно сделать, если бы такие твердые тела существовали. В реальности же влияние удара по концу палки распространяется по ней со скоростью звука в данном веществе, а скорость звука зависит от упругости и плотности материала. Относительность накладывает абсолютный предел возможной твердости любых тел так, что скорость звука в них не может превышать c .

То же самое происходит и в случае, если вы нахидитесь в поле притяжения, и сначала держите вертикально струну или шест за верхний конец, а потом отпускаете его. Точка, которую вы отпустили, придет в движение сразу, а нижний конец не сможет начать падать до тех пор, пока до него со скоростью звука не дойдет влияние отпускания.

Сложно сформулировать общую теор ию упругих материалов в рамках относительности, но основную идею можно показать и на примере механики Ньютона . Уравнение продольного движения идеально упругого тела можно получить из закона Гука . В переменных массы на единицу длины p и модуля упругости Юнга Y , продольное смещение X удовлетворяет волновому уравнению.

Решение в виде плоских волн двигается со скоростью звука s , причем s 2 = Y/p . Данное уравнение не предполагает возможность причинностного влияния, распространяющегося быстрее s . Таким образом, относительность накладывает теор етический предел на величину упругости: Y < pc 2 . Практически же не встречаются материалы, даже близко подходящие к нему. Кстати, даже если скорость звука в материале близка к c , вещество само по себе вовсе не обязано двигаться с релятиви стской скоростью. Но откуда мы знаем, что в принципе не может существовать вещества, преодолевающего этот предел? Ответ заключается в том, что все вещества состоят из частиц, взаимодействие между которыми подчиняется стандартной модели элементарных частиц, а в этой модели никакое взаимодействие распространяться быстрее света не может (смотри ниже насчет квантовой теор ии поля).

5. Фазовая скорость

Посмотрите на это волновое уравнение:

У него есть решения вида:

Эти решения есть синусоидальные волны, движущиеся со скоростью,

Но ведь это быстрее света, значит у нас в руках уравнение тахионного поля? Нет, это всего лишь обычное релятиви стское уравнение массивной скалярной частицы!

Парадокс разрешится, если понять различие между этой скоростью, называемой также фазовой скоростью v ph от другой скорости, называемой групповой v gr которая датеся формулой,

Если у волнового решения есть разброс частот, то оно приобретет вид волнового пакета , который движется с групповой сокростью, не превышающей c . Только гребни волны движутся с фазовой скоростью. Передавать информацию при помощи такой волны можно лишь с групповой скоростью, так что фазовая скорость дает нам очередной пример сверхсветовой скорости, которая не может переносить информацию.

7. Релятиви стская ракета

Диспетчер на Земле следит за космическим кораблем, улетающим со скоростью 0,8c . Согласно теор ии относительности, даже после учета допплеровского сдвига сигналов от корабля, он увидит, что время на корабле замедлено и часы там идут медленнее с коэффициентом 0,6. Если он рассчитает частное от деления расстояния, пройденного кораблем на затраченное время, измеренное по часам корабля, то он получит 4/3c . Это означает, что пассажиры корабля преодолевают межзвездное пространство с эффективной скоростью, большей, чем скорость света, которую они бы получили, если бы ее измерили. С точки зрения пассажиров корабля, межзвездные расстояния подвержены лоренцеву сокращению с тем же коэффициентом 0,6 и значит, они тоже должны признать, что они покрывают известные межзвездные расстояния со скоростью 4/3 c .

Это реальное явление и оно в принципе может быть использовано космическими путешественниками для преодоления огромных расстояний в течение жизни. Если они будут ускоряться с постоянным ускорением, равным ускорению свободного падения на Земле , то у них на корабле будет не только идеальная искусственная сила тяжести , но они еще успеют пересечь Галактику всего за 12 своих лет! (см. вопрос Каковы уравнения релятиви стской ракеты ?)

Однако, и это - не настоящее СС движение. Эффективная скорость вычислена из расстояния в одной системе отсчета, а времени - в другой. Это не настоящая скорость. Только пассажиры корабля получают преимущества от этой скорости. Диспечер же, например, не успеет за свою жизнь увидеть, как они пролетят гигантское расстояние.

Сложные случаи СС движения

9. Парадокс Эйнштейна, Подольского, Розена (ЭПР)

10. Виртуальные фотоны

11. Квантовое туннелирование

Реальные кандидаты в СС путешественники

В данном разделе приведены умозрительные, но серьезные предположения о возможности сверхсветового путешествия. Это будут не те вещи, которые обычно помещают в ЧаВо, так как они вызывают больше вопросов, чем дают ответов. Они приведены здесь в основном для того, чтобы показать, что в данном направлении проводятся серьезные исследования. В каждом направлении дается лишь краткое введение. Более подробные сведения можно почерпнуть на просторах интернета.

19. Тахионы

Тахионы - это гипотетические частицы, которые локально движутся быстрее света. Чтобы это делать, у них должна быть масса, измеряемая мнимым числом, но их энерги я и импульс должны быть положительными. Иногда думают, что такие СС частицы должно быть невозможно засечь, но на самом деле, причин так считать нет. Тени и зайчики подсказывают нам, что из СС движения еще не следует незаметность.

Тахионы никогда не наблюдались и большинство физиков сомневаются в их существовании. Как-то заявлялось, что проведены опыты по измерению массы нейтрино, вылетающих при распаде Трития, и что эти нейтрино были тахионными. Это весьма сомнительно, но все-таки не исключено. В тахионных теор иях есть проблемы, так как с точки зрения возможных нарушений причинности, они дестабилизируют вакуум. Может и можно эти проблемы обойти, но тогда окажется невозможно применять тахионы в нужном нам СС сообщении.

Правда состоит в том, что большинство физиков считают тахионы признаком ошибки в полевых теор их, а интерес к ним со стороны широких масс подогревается, в основном, со стороны научной фантастики (см. статью Тахионы).

20. Чревоточины

Наиболее известной предположительной возможностью СС путешествия является использование чревоточин. Чревоточины - это туннели в пространстве-времени, соединяющие одно место во Вселенной, с другим. По ним можно переместиться между этими точками быстрее, чем сделал бы свет своим обычным путем. Чревоточины - это явление классической общей относительности, но чтобы их создать, нужно изменить топологию пространства-времени. Возможность этого может быть заключено в теор ии квантовой гравитации.

Чтобы поддерживать чревоточины в открытом состоянии, нужны огромные количества отрицательной энерги и. Миснер и Торн предложили, что для генерации отрицательной энерги и можно использовать крупномасштабный эффект Казимира, а Виссер предложил решение с использованием космических струн. Все эти идеи весьма умозрительны и могут быть попросту нереальными. Необычное вещество с отрицательной энерги ей может не существовать в нужной для явления форме.

Торн обнаружил, что если чревоточины можно создать, то с их помощью можно организовать замкнутые временные петли, которые сделают возможными путешествия во времени. Также было сделано предположение, что многовариантная интерпретация квантовой механики свидетельствует о том, что никаких парадоксов путешествие во времени не вызовет, и что события просто развернутся иначе, когда вы попадете в прошлое. Хокинг говорит, что чревоточины могут просто нестабильными и потому неприменимыми на практике. Но сама тема остается плодотворной областью для мысленных экспериментов, позволяющих разобраться, что возможно и что не возможно исходя и известных и предполагаемых законов физики.
refs:
W. G. Morris and K. S. Thorne, American Journal of Physics 56 , 395-412 (1988)
W. G. Morris, K. S. Thorne, and U. Yurtsever, Phys. Rev. Letters 61 , 1446-9 (1988)
Matt Visser, Physical Review D39 , 3182-4 (1989)
see also "Black Holes and Time Warps" Kip Thorn, Norton & co. (1994)
For an explanation of the multiverse see, "The Fabric of Reality" David Deutsch, Penguin Press.

21. Двигатели-деформаторы

[Понятие не имею, как это перевести! В оригинале warp drive. - прим. переводчика;
перевёл по аналогии со статьей на Мембране
]

Деформатор мог бы быть механизмом для закручивания пространства-времени таким образом, чтобы объект мог перемещаться быстрее света. Мигель Алькабьер сделался знаменитым благодаря тому, что разработал геометрию, которая описывает такой деформатор. Искажение пространства-времени делает возможным для объекта перемещаться быстрее света, оставаясь на время-подобной кривой. Препятствия те же, что и при создании чревоточин. Чтобы создать деформатор, нужно вещество с отрицательной плотностью энерги и. Даже если такое вещество возможно, все равно непонятно, как его можно получить и как с его помощью заставить работать деформатор.
ref M. Alcubierre, Classical and Quantum Gravity, 11 , L73-L77, (1994)

Заключение

Во-первых, оказалось нелегко вообще определить, что значит СС путешествие и СС сообщение. Многие вещи, навроде теней, совершают СС дивжение, но так, что его нельзя использовать, например, для передачи информации. Но есть и серьезные возможности реального СС перемещения, которые предложены в научной литературе, но их реализация пока невозможна технически. Принцип неопределенности Гейзенберга делает невозможным использование кажущегося СС движения в квантовой механике. В общей относительности есть потенциал ьные средства СС движения, но их может быть невозможно использовать. Думается, что крайне маловероятно, что в обозримом будущем, или вообще, техника окажется способна создавать космические корабли с СС двигателями, но любопытно, что теор етическая физика, как мы ее сейчас знаем, не закрывает дверь для СС движения насовсем. СС движение в стиле научно-фантастических романов, видимо, совершенно невозможно. Для физиков интересен вопрос: "а почему, собственно, это невозможно, и чему из этого можно научиться?"

Посвященная прямому измерению скорости движения нейтрино. Результаты звучат сенсационно: скорость нейтрино оказалась слегка - но статистически достоверно! - больше скорости света. Статья коллаборации содержит анализ разнообразных источников погрешностей и неопределенностей, однако реакция подавляющего большинства физиков остается очень скептической, прежде всего потому, что такой результат не согласуется с другими экспериментальными данными по свойствам нейтрино.


Рис. 1.

Подробности эксперимента

Идея эксперимента (см. OPERA experiment) очень проста. Нейтринный пучок рождается в ЦЕРНе, летит сквозь Землю в итальянскую лабораторию Гран-Сассо и проходит там сквозь специальный нейтринный детектор OPERA. Нейтрино очень слабо взаимодействуют с веществом, но из-за того, что их поток из ЦЕРНа очень велик, некоторые нейтрино всё же сталкиваются с атомами внутри детектора. Там они порождают каскад заряженных частиц и тем самым оставляют в детекторе свой сигнал. Нейтрино в ЦЕРНе рождаются не непрерывно, а «всплесками», и если мы знаем момент рождения нейтрино и момент его поглощения в детекторе, а также расстояние между двумя лабораториями, мы можем вычислить скорость движения нейтрино.

Расстояние между источником и детектором по прямой составляет примерно 730 км и измерено оно с точностью 20 см (точное расстояние между реперными точками составляет 730 534,61 ± 0,20 метров). Правда, процесс, приводящий к рождению нейтрино, вовсе не локализован с такой точностью. В ЦЕРНе пучок протонов высокой энергии вылетает из ускорителя SPS, сбрасывается на графитовую мишень и порождает в ней вторичные частицы, в том числе мезоны. Они по-прежнему летят вперед с околосветовой скоростью и на лету распадаются на мюоны с испусканием нейтрино. Мюоны тоже распадаются и порождают дополнительные нейтрино. Затем все частицы, кроме нейтрино, поглощаются в толще вещества, а те беспрепятственно долетают до места детектирования. Общая схема этой части эксперимента приведена на рис. 1.

Весь каскад, приводящий к появлению нейтринного пучка, может растянуться на сотни метров. Однако поскольку все частицы в этом сгустке летят вперед с околосветовой скоростью, для времени детектирования нет практически никакой разницы, родилось нейтрино сразу или через километр пути (однако имеет большое значение, когда именно тот исходный протон, который привел к рождению данного нейтрино, вылетел из ускорителя). В результате рожденные нейтрино по большому счету просто повторяют профиль исходного протонного пучка. Поэтому ключевым параметром здесь является именно временной профиль пучка протонов, вылетающих из ускорителя, в особенности - точное положение его переднего и заднего фронтов, а этот профиль измеряется с хорошим временны м разрешением (см. рис. 2).

Каждый сеанс сброса протонного пучка на мишень (по-английски такой сеанс называется spill , «выплеск») длится примерно 10 микросекунд и приводит к рождению огромного числа нейтрино. Однако практически все они пролетают Землю (и детектор) насквозь без взаимодействия. В тех же редких случаях, когда детектор всё-таки регистрирует нейтрино, невозможно сказать, в какой именно момент в течение 10-микросекундного интервала оно было испущено. Анализ можно провести лишь статистически, то есть накопить много случаев детектирования нейтрино и построить их распределение по временам относительно момента начала отсчета для каждого сеанса. В детекторе за начало отсчета принимается тот момент времени, когда условный сигнал, движущийся со скоростью света и излученный ровно в момент переднего фронта протонного пучка, достигает детектора. Точное измерение этого момента стало возможно благодаря синхронизации часов в двух лабораториях с точностью в несколько наносекунд.

На рис. 3 показан пример такого распределения. Черные точки - это реальные нейтринные данные, зарегистрированные детектором и просуммированные по большому числу сеансов. Красная кривая показывает условный «опорный» сигнал, который двигался бы со скоростью света. Видно, что данные начинаются примерно на 1048,5 нс раньше опорного сигнала. Это, впрочем, еще не означает, что нейтрино действительно на микросекунду опережает свет, а является лишь поводом для того, чтобы тщательно перемерить все длины кабелей, скорости срабатывания аппаратуры, времена задержки электроники и так далее. Эта перепроверка была выполнена, и оказалось, что она смещает «опорный» момент на 988 нс. Таким образом, получается, что нейтринный сигнал действительно обгоняет опорный, но лишь примерно на 60 наносекунд. В пересчете на скорость нейтрино это отвечает превышению скорости света примерно на 0,0025%.

Погрешность этого измерения была оценена авторами анализа в 10 наносекунд, что включает в себя и статистическую, и систематическую погрешности. Таким образом, авторы утверждают, что они «видят» сверхсветовое движение нейтрино на уровне статистической достоверности в шесть стандартных отклонений.

Отличие результатов от ожиданий на шесть стандартных отклонений уже достаточно велико и называется в физике элементарных частиц громким словом «открытие». Однако надо правильно понимать это число: оно лишь означает, что вероятность статистической флуктуации в данных очень мала, но не говорит о том, насколько надежна методика обработки данных и насколько хорошо физики учли все инструментальные погрешности. В конце концов, в физике элементарных частиц имеется немало примеров, когда необычные сигналы с исключительно большой статистической достоверностью не подтверждались другими экспериментами.

Чему противоречат сверхсветовые нейтрино?

Вопреки широко распространенному мнению, специальная теория относительности не запрещает само по себе существование частиц, движущихся со сверхсветовой скоростью. Однако для таких частиц (их обобщенно называют «тахионы») скорость света тоже является пределом, но только снизу - они не могут двигаться медленнее нее. При этом зависимость энергии частиц от скорости получается обратной: чем больше энергия, тем ближе скорость тахионов к скорости света.

Гораздо более серьезные проблемы начинаются в квантовой теории поля. Эта теория приходит на смену квантовой механике, когда речь идет про квантовые частицы с большими энергиями. В этой теории частицы - это не точки, а, условно говоря, сгустки материального поля, и рассматривать их отдельно от поля нельзя. Оказывается, что тахионы понижают энергию поля, а значит, делают вакуум нестабильным. Пустоте тогда выгоднее спонтанно рассыпаться на огромное число этих частиц, и потому рассматривать движение одного тахиона в обычном пустом пространстве просто бессмысленно. Можно сказать, что тахион - это не частица, а нестабильность вакуума.

В случае тахионов-фермионов ситуация несколько сложнее, но и там тоже возникают сравнимые трудности, мешающие созданию самосогласованной тахионной квантовой теории поля, включающей обычную теорию относительности.

Впрочем, это тоже не последнее слово в теории. Так же, как экспериментаторы измеряют всё, что поддается измерению, теоретики тоже проверяют все возможные гипотетические модели, которые не противоречат имеющимся данным. В частности, существуют теории, в которых допускается небольшое, не замеченное пока отклонение от постулатов теории относительности - например, скорость света сама по себе может быть переменной величиной. Прямой экспериментальной поддержки у таких теорий пока нет, но они пока и не закрыты.

Под этой краткой зарисовкой теоретических возможностей можно подвести такой итог: несмотря на то что в некоторых теоретических моделях движение со сверхсветовой скоростью возможно, они остаются исключительно гипотетическими конструкциями. Все имеющиеся на сегодня экспериментальные данные описываются стандартными теориями без сверхсветового движения. Поэтому если бы оно достоверно подтвердилось хоть для каких-нибудь частиц, квантовую теорию поля пришлось бы кардинально переделывать.

Стоит ли считать результат OPERA в этом смысле «первой ласточкой»? Пока нет. Пожалуй, самым главным поводом для скепсиса остается тот факт, что результат OPERA не согласуется с другими экспериментальными данными по нейтрино.

Во-первых, во время знаменитой вспышки сверхновой SN1987A были зарегистрированы и нейтрино, которые пришли за несколько часов до светового импульса. Это не означает, что нейтрино шли быстрее света, а лишь отражает тот факт, что нейтрино излучаются на более раннем этапе коллапса ядра при вспышке сверхновой, чем свет. Однако раз нейтрино и свет, проведя в пути 170 тысяч лет, не разошлись более, чем на несколько часов, значит, скорости у них очень близки и различаются не более чем на миллиардные доли. Эксперимент же OPERA показывает в тысячи раз более сильное расхождение.

Тут, конечно, можно сказать, что нейтрино, рождающиеся при вспышках сверхновых, и нейтрино из ЦЕРНа сильно различаются по энергии (несколько десятков МэВ в сверхновых и 10–40 ГэВ в описываемом эксперименте), а скорость нейтрино меняется в зависимости от энергии. Но это изменение в данном случае работает в «неправильную» сторону: ведь чем выше энергия тахионов, тем ближе их скорость должна быть к скорости света. Конечно, и тут можно придумать какую-то модификацию тахионной теории, в которой эта зависимость была бы совсем другой, но в таком случае придется уже обсуждать «дважды-гипотетическую» модель.

Далее, из множества экспериментальных данных по нейтринным осцилляциям, полученным за последние годы, следует, что массы всех нейтрино отличаются друг от друга лишь на доли электронвольта. Если результат OPERA воспринимать как проявление сверхсветового движения нейтрино, то тогда величина квадрата массы хотя бы одного нейтрино будет порядка –(100 МэВ) 2 (отрицательный квадрат массы - это и есть математическое проявление того, что частица считается тахионом). Тогда придется признать, что все сорта нейтрино - тахионы и обладают примерно такой массой. С другой стороны, прямое измерение массы нейтрино в бета-распаде ядер трития показывает, что масса нейтрино (по модулю) не должна превышать 2 электронвольта. Иными словами, все эти данные согласовать друг с другом не удастся.

Вывод отсюда можно сделать такой: заявленный результат коллаборации OPERA трудно вместить в какие-либо, даже в самые экзотические теоретические модели.

Что дальше?

Во всех больших коллаборациях в физике элементарных частиц нормальной практикой является ситуация, когда каждый конкретный анализ выполняется небольшой группой участников, и лишь затем результаты выносятся на общее обсуждение. В данном случае, по-видимому, этот этап был слишком кратким, в результате чего далеко не все участники коллаборации согласились подставить свою подпись под статьей (полный список насчитывает 216 участников эксперимента, а у препринта имеется лишь 174 автора). Поэтому в ближайшее время, по всей видимости, внутри коллаборации будет проведено множество дополнительных проверок, и только после этого статья будет послана в печать.

Конечно, сейчас можно ожидать и поток теоретических статей с разнообразными экзотическими объяснениями этого результата. Однако пока заявленный результат не будет надежно перепроверен, считать его полноправным открытием нельзя.

Скорость больше скорости света в вакууме - это реальность. Теория относительности Эйнштейна запрещает лишь сверхсветовую передачу информации. Поэтому есть довольно много случаев, когда объекты могут двигаться быстрее света и ничего при этом не нарушать. Начнем с теней и солнечных зайчиков.

Если создать на далекой стене тень от пальца, на который светите фонариком, а потом пальцем пошевелите, то тень задвигается гораздо быстрее пальца. Если стена расположена очень далеко, то движение тени будет отставать от движения пальца, так как свет должен будет еще долететь от пальца до стены, но все равно скорость движения тени будет во столько же раз больше. То есть, скорость движения тени не ограничена скоростью света.

Кроме теней быстрее света могут двигаться и «солнечные зайчики». Например, пятнышко от лазерного луча, направленного на Луну. Расстояние до Луны 385 000 км. Если слегка поводить лазером сдвинув его едва лишь на 1 см, то он успеет пробежать Луну со скоростью примерно на треть больше световой.

Подобные вещи могут происходить и в природе. Например, световой луч от пульсара, нейтронной звезды, может прочесывать облако пыли. Яркая вспышка порождает расширяющееся оболочку из света или другого излучения. Когда она пересекает поверхность облака, то создается световое кольцо, увеличивающееся быстрее скорости света.

Все это примеры вещей, движущихся быстрее света, но которые не являлись физическими телами. При помощи тени или зайчика нельзя передать сверхсветовое сообщение, так что и общение быстрее света не получается.

А вот уже пример, который связан с физическими телами. Забегая вперед, скажем, что опять же сверхсветовых сообщений не получится.

В системе отсчёта, связанной с вращающимся телом, удалённые объекты могут двигаться со сверхсветовой скоростью. Например, Альфа Центавра в системе отсчёта, связанной с Землёй, движется со скоростью, более чем в 9600 раз превышающей скорость света, «проходя» расстояние около 26 световых лет в сутки. И точно такой же пример с Луной. Встаньте к ней лицом и повернитесь вокруг своей оси за пару секунд. За это время она повернулась вокруг вас на примерно на 2,4 миллиона километров, то есть в 4 раза быстрее скорости света. Ха-ха, скажете вы, так это ж не она вертелась, а я…А вспомните, что в теории относительности все системы отсчета независимы, включая и вращающиеся. Так что, с какой стороны еще посмотреть…

И что же делать? Ну на самом деле, никаких противоречий здесь нет, ведь опять же, это явление не может быть использовано для сверхсветовой передачи сообщений. Кроме того заметьте, в своей окрестности Луна не превышает скорости света. А именно на превышение локальной скорости света все запреты и накладываются в общей теории относительности.

В (локально) инерциальной системе отсчёта с началом рассмотрим материальную точку, которая в момент времени находится в . Скорость этой точки мы называем сверхсветовой в момент , если выполняется неравенство:

Src="/pictures/wiki/files/50/21ea15551d469cba11529bd16574e427.png" border="0">

где , - это скорость света в вакууме, а время и расстояние от точки до измеряются в упомянутой системе отсчёта.

где - радиус-вектор в невращающейся системе координат, - вектор угловой скорости вращения системы координат. Как видно из уравнения, в неинерциальной системе отсчёта, связанной с вращающимся телом, удалённые объекты могут двигаться со сверхсветовой скоростью , в том смысле, что src="/pictures/wiki/files/54/6fa9a2d9089db2f154c5c90051ce210b.png" border="0">. Это не вступает в противоречие со сказанным во введении, так как . Например, для системы координат связанной с головой человека, находящегося на Земле, координатная скорость движения Луны при обычном повороте головы будет больше скорости света в вакууме. В этой системе при повороте за маленькое время Луна опишет дугу с радиусом приблизительно равным расстоянию между началом системы координат (головой) и Луной.

Фазовая скорость

Фазовая скорость вдоль направления, отклонённого от волнового вектора на угол α. Рассматривается монохроматическая плоская волна.

Труба Красникова

Квантовая механика

Принцип неопределённости в квантовой теории

В квантовой физике состояния частиц описываются векторами гильбертового пространства, которые определяют лишь вероятность получения при измерениях определённых значений физических величин (в соответствии с квантовым принципом неопределённости). Наиболее известно представление этих векторов волновыми функциями , квадрат модуля которых определяет плотность вероятности обнаружения частицы в данном месте. При этом оказывается, что эта плотность может двигаться быстрее скорости света (например, при решении задачи о прохождении частицы через энергетический барьер). При этом эффект превышения скорости света наблюдается только на небольших расстояниях. Ричард Фейнман в своих лекциях выражался об этом так :

… для электромагнитного излучения существует также [ненулевая] амплитуда вероятности двигаться быстрее (или медленнее), чем обычная скорость света. Вы убедились на предыдущей лекции, что свет не всегда двигается только по прямым линиям; сейчас вы увидите, что он не всегда движется со скоростью света! Это может казаться удивительным, что существует [ненулевая] амплитуда для того, чтобы фотон двигался быстрее или медленнее, чем обычная скорость света c

Оригинальный текст (англ.)

… there is also an amplitude for light to go faster (or slower) than the conventional speed of light. You found out in the last lecture that light doesn’t go only in straight lines; now, you find out that it doesn’t go only at the speed of light! It may surprise you that there is an amplitude for a photon to go at speeds faster or slower than the conventional speed, c

Ричард Фейнман, нобелевский лауреат по физике 1965 года.

При этом в силу принципа неразличимости нельзя сказать, ту же ли самую частицу мы наблюдаем, или её новорождённую копию. В своей нобелевской лекции в 2004 году Франк Вилчек привёл следующее рассуждение: :

Представьте себе частицу, двигающуюся в среднем со скоростью, очень близкой к скорости света, но с такой неопределённостью в положении, как этого требует квантовая теория. Очевидно, будет определённая вероятность наблюдать эту частицу двигающейся несколько быстрее, чем в среднем, и, следовательно, быстрее света, что противоречит специальной теории относительности. Единственный известный способ разрешить это противоречие требует привлечения идеи античастиц. Очень грубо говоря, требуемая неопределённость в положении достигается допущением, что акт измерения может затрагивать образование античастиц, каждая из которых неотличима от оригинала, с различными расположениями. Для сохранения баланса сохраняющихся квантовых чисел, дополнительные частицы должны сопровождаться тем же числом античастиц. (Дирак пришёл к предсказанию античастиц через последовательность изобретательных интерпретаций и реинтерпретаций элегантного релятивистского волнового уравнения, которое он вывел, а не через эвристическое рассмотрение, подобное тому, которое я привёл. Неизбежность и всеобщность этих выводов, а также их прямое отношение к базовым принципам квантовой механики и специальной теории относительности стали очевидны только в ретроспективе).

Оригинальный текст (англ.)

Imagine a particle moving on average at very nearly the speed of light, but with an uncertainty in position, as required by quantum theory. Evidently it there will be some probability for observing this particle to move a little faster than average, and therefore faster than light, which special relativity won’t permit. The only known way to resolve this tension involves introducing the idea of antiparticles. Very roughly speaking, the required uncertainty in position is accommodated by allowing for the possibility that the act of measurement can involve the creation of several particles, each indistinguishable from the original, with different positions. To maintain the balance of conserved quantum numbers, the extra particles must be accompanied by an equal number of antiparticles. (Dirac was led to predict the existence of antiparticles through a sequence of ingenious interpretations and re-interpretations of the elegant relativistic wave equation he invented, rather than by heuristic reasoning of the sort I’ve presented. The inevitability and generality of his conclusions, and their direct relationship to basic principles of quantum mechanics and special relativity, are only clear in retrospect).

Франк Вилчек

Эффект Шарнхорста

Скорость волн зависит от свойств среды, в которой они распространяются. Специальная теория относительности утверждает, что разогнать массивное тело до скорости, превышающей скорость света в вакууме, невозможно. В то же время теория не постулирует какое-то конкретное значение для скорости света. Она измеряется экспериментальным путём и может различаться в зависимости от свойств вакуума . Для вакуума, энергия которого меньше энергии обычного физического вакуума , скорость света теоретически должна быть выше , а максимально допустимая скорость передачи сигналов определяется максимально возможной плотностью отрицательной энергии . Одним из примеров такого вакуума является вакуум Казимира , возникающий в тонких щелях и капиллярах размером (диаметром) до десятка нанометров (примерно в сто раз больше размеров типичного атома). Этот эффект можно также объяснить уменьшением количества виртуальных частиц в вакууме Казимира, которые подобно частицам сплошной среды замедляют распространение света. Вычисления, сделанные Шарнхорстом , говорят о превышении скорости света в вакууме Казимира по сравнению с обычным вакуумом на 1/10 24 для щели шириной 1 нм. Было также показано, что превышение скорости света в вакууме Казимира не ведёт к нарушению принципа причинности . Превышение скорости света в вакууме Казимира по сравнению со скоростью света в обычном вакууме экспериментально пока не подтверждено из-за чрезвычайной сложности измерения данного эффекта .

Теории с переменностью скорости света в вакууме

В современной физике существуют гипотезы, согласно которым скорость света в вакууме не является константой, и её значение может изменяться с течением времени (Variable Speed of Light (VSL)) . В наиболее распространенной версии этой гипотезы предполагается, что в начальные этапы жизни нашей вселенной значение константы (скорость света) было значительно больше, чем сейчас. Соответственно, раньше вещество могло двигаться со скоростью, значительно превосходящей современную скорость света.

Верхний предел скорости известен даже школьникам: связав массу и энергию знаменитой формулой E = mc 2 , еще в начале ХХ века указал на принципиальную невозможность ничему, обладающему массой, перемещаться в пространстве быстрее, чем скорость света в вакууме. Однако уже в этой формулировке содержатся лазейки, обойти которые вполне по силам некоторым физическим явлениям и частицам. По крайней мере, явлениям, существующим в теории.

Первая лазейка касается слова «масса»: на безмассовые частицы эйнштейновские ограничения не распространяются. Не касаются они и некоторых достаточно плотных сред, в которых скорость света может быть существенно меньше, чем в вакууме. Наконец, при приложении достаточной энергии само пространство может локально деформироваться, позволяя перемещаться так, что для наблюдателя со стороны, вне этой деформации, движение будет происходить словно быстрее скорости света.

Некоторые такие «сверхскоростные» явления и частицы физики регулярно фиксируют и воспроизводят в лабораториях, даже применяют на практике, в высокотехнологичных инструментах и приборах. Другие, предсказанные теоретически, ученые еще пытаются обнаружить в реальности, а на третьи у них большие планы: возможно, когда-нибудь эти явления позволят и нам перемещаться по Вселенной свободно, не ограничиваясь даже скоростью света.

Квантовая телепортация

Статус: активно развивается

Живого существа – хороший пример технологии, теоретически допустимой, но практически, видимо, неосуществимой никогда. Но если речь идет о телепортации, то есть мгновенном перемещении из одного места в другое небольших предметов, а тем более частиц, она вполне возможна. Чтобы упростить задачу, начнем с простого – частиц.

Кажется, нам понадобятся аппараты, которые (1) полностью пронаблюдают состояние частицы, (2) передадут это состояние быстрее скорости света, (3) восстановят оригинал.

Однако в такой схеме даже первый шаг полностью реализовать невозможно. Принцип неопределенности Гейзенберга накладывает непреодолимые ограничения на точность, с которой могут быть измерены «парные» параметры частицы. Например, чем лучше мы знаем ее импульс, тем хуже – координату, и наоборот. Однако важной особенностью квантовой телепортации является то, что, собственно, измерять частицы и не надо, как не надо ничего и восстанавливать – достаточно получить пару спутанных частиц.

Например, для приготовления таких спутанных фотонов нам понадобится осветить нелинейный кристалл лазерным излучением определенной волны. Тогда некоторые из входящих фотонов распадутся на два спутанных – необъяснимым образом связанных, так что любое изменение состояния одного моментально сказывается на состоянии другого. Эта связь действительно необъяснима: механизмы квантовой спутанности остаются неизвестны, хотя само явление демонстрировалось и демонстрируется постоянно. Но это такое явление, запутаться в котором в самом деле легко – достаточно добавить, что до измерения ни одна из этих частиц не имеет нужной характеристики, при этом какой бы результат мы ни получили, измерив первую, состояние второй странным образом будет коррелировать с нашим результатом.

Механизм квантовой телепортации, предложенный в 1993 году Чарльзом Беннеттом и Жилем Брассардом, требует добавить к паре запутанных частиц всего одного дополнительного участника – собственно, того, кого мы собираемся телепортировать. Отправителей и получателей принято называть Алисой и Бобом, и мы последуем этой традиции, вручив каждому из них по одному из спутанных фотонов. Как только они разойдутся на приличное расстояние и Алиса решит начать телепортацию, она берет нужный фотон и измеряет его состояние совместно с состоянием первого из спутанных фотонов. Неопределенная волновая функция этого фотона коллапсирует и моментально отзывается во втором спутанном фотоне Боба.

К сожалению, Боб не знает, как именно его фотон реагирует на поведение фотона Алисы: чтобы понять это, ему надо дождаться, пока она пришлет результаты своих измерений обычной почтой, не быстрее скорости света. Поэтому никакую информацию передать по такому каналу не получится, но факт останется фактом. Мы телепортировали состояние одного фотона. Чтобы перейти к человеку, остается масштабировать технологию, охватив каждую частицу из всего лишь 7000 триллионов триллионов атомов нашего тела, – думается, от этого прорыва нас отделяет не более, чем вечность.

Однако квантовая телепортация и спутанность остаются одними из самых «горячих» тем современной физики. Прежде всего потому, что использование таких каналов связи обещает невзламываемую защиту передаваемых данных: чтобы получить доступ к ним, злоумышленникам понадобится завладеть не только письмом от Алисы к Бобу, но и доступом к спутанной частице Боба, и даже если им удастся до нее добраться и проделать измерения, это навсегда изменит состояние фотона и будет сразу же раскрыто.

Эффект Вавилова – Черенкова

Статус: давно используется

Этот аспект путешествий быстрее скорости света – приятный повод вспомнить заслуги российских ученых. Явление было открыто в 1934 году Павлом Черенковым, работавшим под руководством Сергея Вавилова, три года спустя оно получило теоретическое обоснование в работах Игоря Тамма и Ильи Франка, а в 1958 г. все участники этих работ, кроме уже скончавшегося Вавилова, были награждены Нобелевской премией по физике.

В самом деле, говорит лишь о скорости света в вакууме. В других прозрачных средах свет замедляется, причем довольно заметно, в результате чего на их границе с воздухом можно наблюдать преломление. Коэффициент преломления стекла равен 1,49 – значит, фазовая скорость света в нем в 1,49 раза меньше, а, например, у алмаза коэффициент преломления уже 2,42, и скорость света в нем снижается более чем в два раза. Другим частицам ничто не мешает лететь и быстрее световых фотонов.

Именно это произошло с электронами, которые в экспериментах Черенкова были выбиты высокоэнергетическим гамма-излучением со своих мест в молекулах люминесцентной жидкости. Этот механизм часто сравнивают с образованием ударной звуковой волны при полете в атмосфере на сверхзвуковой скорости. Но можно представить и как бег в толпе: двигаясь быстрее света, электроны проносятся мимо других частиц, словно задевая их плечом – и на каждый сантиметр своего пути заставляя сердито излучать от нескольких до нескольких сотен фотонов.

Вскоре такое же поведение было обнаружено и у всех других достаточно чистых и прозрачных жидкостей, а впоследствии излучение Черенкова зарегистрировали даже глубоко в океанах. Конечно, фотоны света с поверхности сюда действительно не долетают. Зато сверхбыстрые частицы, которые вылетают от небольших количеств распадающихся радиоактивных частиц, время от времени создают свечение, возможно, худо-бедно позволяющее видеть местным жителям.

Излучение Черенкова – Вавилова нашло применение в науке, ядерной энергетике и смежных областях. Ярко светятся реакторы АЭС, битком набитые быстрыми частицами. Точно измеряя характеристики этого излучения и зная фазовую скорость в нашей рабочей среде, мы можем понять, что за частицы его вызвали. Черенковскими детекторами пользуются и астрономы, обнаруживая легкие и энергичные космические частицы: тяжелые невероятно трудно разогнать до нужной скорости, и излучения они не создают.

Пузыри и норы

Вот муравей ползет по листу бумаги. Скорость его невелика, и на то, чтобы добраться от левого края плоскости до правого, у бедняги уходит секунд 10. Но стоит нам сжалиться над ним и согнуть бумагу, соединив ее края, как он моментально «телепортируется» в нужную точку. Нечто подобное можно проделать и с нашим родным пространством-временем, с той лишь разницей, что изгиб требует участия других, невоспринимаемых нами измерений, образуя туннели пространства-времени, – знаменитые червоточины, или кротовые норы.

Кстати, согласно новым теориям, такие кротовые норы – это некий пространственно-временной эквивалент уже знакомого нам квантового феномена запутанности. Вообще, их существование не противоречит никаким важным представлениям современной физики, включая . Но вот для поддержания такого туннеля в ткани Вселенной потребуется нечто, мало похожее на настоящую науку, – гипотетическая «экзотическая материя», которая обладает отрицательной плотностью энергии. Иначе говоря, это должна быть такая материя, которая вызывает гравитационное... отталкивание. Трудно представить, что когда-нибудь эта экзотика будет найдена, а тем более приручена.

Своеобразной альтернативой кротовым норам может служить еще более экзотическая деформация пространства-времени – движение внутри пузыря искривленной структуры этого континуума. Идею высказал в 1993 году физик Мигеле Алькубьерре, хотя в произведениях фантастов она звучала намного раньше. Это как космический корабль, который движется, сжимая и сминая пространство-время перед своим носом и снова разглаживая его позади. Сам корабль и его экипаж при этом остаются в локальной области, где пространство-время сохраняет обычную геометрию, и никаких неудобств не испытывают. Это прекрасно видно по популярному в среде мечтателей сериалу «Звездный путь», где такой «варп-двигатель» позволяет путешествовать, не скромничая, по всей Вселенной.

Статус: от фантастического до теоретического

Фотоны – частицы безмассовые, как и и некоторые другие: их масса в покое равна нулю, и чтобы не исчезнуть окончательно, они вынуждены всегда двигаться, и всегда – со скоростью света. Однако некоторые теории предполагают существование и куда более экзотических частиц – тахионов. Масса их, фигурирующая в нашей любимой формуле E = mc 2 , задается не простым, а мнимым числом, включающим особый математический компонент, квадрат которого дает отрицательное число. Это очень полезное свойство, и сценаристы любимого нами сериала «Звездный путь» объясняли работу своего фантастического двигателя именно «обузданием энергии тахионов».

В самом деле, мнимая масса делает невероятное: тахионы должны терять энергию, ускоряясь, поэтому для них все в жизни обстоит совсем не так, как мы привыкли думать. Сталкиваясь с атомами, они теряют энергию и ускоряются, так что следующее столкновение будет еще более сильным, которое отнимет еще больше энергии и снова ускорит тахионы вплоть до бесконечности. Понятно, что такое самоувлечение просто нарушает базовые причинно-следственные зависимости. Возможно, поэтому изучают тахионы пока лишь теоретики: ни единого примера распада причинно-следственных связей в природе пока никто не видел, а если вы увидите, ищите тахион, и Нобелевская премия вам обеспечена.

Однако теоретики все же показали, что тахионы, может, и не существуют, но в далеком прошлом вполне могли существовать, и, по некоторым представлениям, именно их бесконечные возможности сыграли важную роль в Большом взрыве. Присутствием тахионов объясняют крайне нестабильное состояние ложного вакуума, в котором могла находиться Вселенная до своего рождения. В такой картине мира движущиеся быстрее света тахионы – настоящая основа нашего существования, а появление Вселенной описывается как переход тахионного поля ложного вакуума в инфляционное поле истинного. Стоит добавить, что все это вполне уважаемые теории, несмотря на то, что главные нарушители законов Эйнштейна и даже причинно-следственной связи оказываются в ней родоначальниками всех причин и следствий.

Скорость тьмы

Статус: философический

Если рассуждать философски, тьма – это просто отсутствие света, и скорости у них должны быть одинаковые. Но стоит подумать тщательнее: тьма способна принимать форму, перемещающуюся куда быстрее. Имя этой формы – тень. Представьте, что вы показываете пальцами силуэт собаки на противоположной стене. Луч от фонаря расходится, и тень от вашей руки становится намного больше самой руки. Достаточно малейшего движения пальца, чтобы тень от него на стене сместилась на заметное расстояние. А если мы будем отбрасывать тень на Луну? Или на воображаемый экран еще дальше?..

Едва заметное мановение – и она перебежит с любой скоростью, которая задается лишь геометрией, так что никакой Эйнштейн ей не указ. Впрочем, с тенями лучше не заигрываться, ведь они легко обманывают нас. Стоит вернуться в начало и вспомнить, что тьма – это просто отсутствие света, поэтому никакой физический объект при таком движении не передается. Нет ни частиц, ни информации, ни деформаций пространства-времени, есть только наша иллюзия того, что это отдельное явление. В реальном же мире никакая тьма не сможет сравниться в скорости со светом.