Характерные химические свойства солей. Химические взаимодействия для класса средних солей. Типичные реакции кислых солей

5.Нитриты, соли азотистой кислоты НNО 2 . Используют прежде всего нитриты щелочных металлов и аммония, меньше - щелочно-земельных и Зd-металлов, Рb и Ag. О ннитритах остальных металлов имеются только отрывочные сведения.

Нитриты металлов в степени окисления +2 образуют кристалогидраты с одной, двумя или четырьмя молекулами воды. Нитриты образуют двойные и тройные соли, напр. CsNO 2 . AgNO 2 или Ba(NO 2) 2 . Ni(NO 2) 2 . 2KNO 2 , а также комплексные соединения, например Na 3 .

Кристаллические структуры известны лишь для нескольких безводных нитритов. Анион NO2 имеет нелинейную конфигурацию; угол ONO 115°, длина связи Н—О 0,115 нм; тип связи М—NO 2 ионно-ковалентный.

Хорошо растворимы в воде нитриты К, Na, Ba, плохо - нитриты Ag, Hg, Сu. С повышением температуры растворимость нитритов увеличивается. Почти все нитриты плохо растворимы в спиртах, эфирах и малополярных растворителях.

Нитриты термически малоустойчивы; плавятся без разложения только нитриты щелочных металлов, нитриты остальных металлов разлагаются при 25-300 °С. Механизм разложение нитритов сложен и включает ряд параллельно-последовательных реакций. Основные газообразные продукты разложения - NO, NO 2 , N 2 и О 2 , твёрдые - оксид металла или элементный металл. Выделение большого количества газов обусловливает взрывное разложение некоторых нитритов, например NH 4 NO 2 , который разлагается на N 2 и Н 2 О.

Характерные особенности нитритов связаны с их термической нестойкостью и способностью нитрит-иона быть как окислителем, так и восстановителем, в зависимости от среды и природы реагентов. В нейтральной среде нитриты обычно восстанавливаются до NO, в кислой окисляются до нитратов. Кислород и СО 2 не взаимодействуют с твердыми нитритами и их водными растворами. Нитриты способствуют разложению азотсодержащих органических веществ, в частности аминов, амидов и др. С органическими галогенидами RXН. реагируют с образованием как нитритов RONO, так и нитросоединений RNO 2 .

Промышленное получение нитритов основано на абсорбции нитрозного газа (смеси NO + NO 2) растворами Na 2 CO 3 или NaOH с последовательной кристализацией NaNO 2 ; нитриты остальных металлоов в промышленности и лабораториях получают обменной реакцией солей металлов с NaNO 2 или восстановлением нитратов этих металлов.

Нитриты применяют для синтеза азокрасителей, в производстве капролактама, в качестве окислителей и восстановителей в резинотехнической, текстильной и металлообрабатывающей промышленности, как консерванты пищевых продуктов. Нитриты например NaNО 2 и KNO 2 , токсичны, вызывают головную боль, рвоту, угнетают дыхание и т.д. При отравлении NaNO 2 в крови образуется метгемоглобин, повреждаются мембраны эритроцитов. Возможно образование нитрозаминов из NaNO 2 и аминов непосредственно в желудочно-кишечном тракте.

6.Сульфаты, соли серной кислоты. Известны средние сульфаты с анионом SO 4 2- кислые, или гидросульфаты, с анионом HSO 4 -, основные, содержащие наряду с анионом SO 4 2- - группы ОН, например Zn 2 (OH) 2 SO 4 . Существуют также двойные сульфаты, включающие два различных катиона. К ним относят две большие группы сульфатов - квасцы, а также шениты M 2 Э(SO 4) 2 . 6H 2 O, где М-однозарядный катион, Э - Mg, Zn и другие двухзарядные катионы. Известен тройной сульфат K 2 SO 4 . MgSO 4 . 2CaSO 4 . 2H 2 O (минерал полигалит), двойные основные сульфаты, например минералы групп алунита и ярозита M 2 SO 4 . Al 2 (SO 4) 3 . 4Al(OH 3 и M 2 SO 4 . Fe 2 (SO 4) 3 . 4Fe(OH) 3 , где М - однозарядный катион. Сульфаты могут входить в состав смешанных солей, напр. 2Na 2 SO 4 . Na 2 CO 3 (минерал беркеит), MgSO 4 . KCl . 3H 2 O (каинит).

Сульфаты - кристаллические вещества, средние и кислые в большенстве случаев хорошо растворимы в воде. Малорастворимы сульфаты кальции, стронция, свинца и некоторые др., практически нерастворимы BaSO 4 , RaSO 4 . Основные сульфаты, как правило, малорастворимы или практически нерастворимы, или гидролизуются водой. Из водных растворов сульфаты могут кристаллизоваться в виде кристаллогидратов. Кристаллогидраты некоторых тяжелых металлов называются купоросами; медный купорос СuSO 4 . 5H 2 O, железный купорос FeSO 4 . 7Н 2 О.

Средние сульфаты щелочных металлов термически устойчивы, в то время как кислые сульфаты при нагревании разлагаются, превращаясь в пиросульфаты: 2KHSO 4 = Н 2 О + K 2 S 2 O 7 . Средние сульфаты др. металлов, а также основные сульфаты при нагревании до достаточно высоких температур, как правило, разлагаются с образованием оксидов металлов и выделением SO 3 .

Сульфаты широко распространены в природе. Они встречаются в виде минералов, например гипс CaSO 4 . H 2 O, мирабилит Na 2 SO 4 . 10Н 2 О, а также входят в состав морской и речной воды.

Многие сульфаты могут быть получены при взаимодействии H 2 SO 4 с металлами, их оксидами и гидроксидами, а также разложением солей летучих кислот серной кислотой.

Неорганические сульфаты находят широкое применение. Например, аммония сульфат -азотное удобрение, натрия сульфат используют в стекольной, бумажной промышленности, производстве вискозы и др. Природные сульфатные минералы - сырье дм промышленного получения соединений различных металлов, строит, материалов и др.

7.Сульфиты, соли сернистой кислоты H 2 SO 3 . Различают средние сульфиты с анионом SO 3 2- и кислые (гидросульфиты) с анионом HSO 3 -. Средние сульфиты - кристаллические вещества. Сульфиты аммония и щелочных металлов хорошо растворимы в воде; растворимость (г в 100 г): (NH 4) 2 SO 3 40,0 (13 °С), К 2 SО 3 106,7 (20 °С). В водных растворах образуют гидросульфиты. Сульфиты щелочно-земельных и некоторых др. металлов практически не растворимы в воде; растворимость MgSO 3 1 г в 100 г (40°С). Известны кристаллогидраты (NH 4) 2 SO 3 . Н 2 O, Na 2 SO 3 . 7H 2 O, К 2 SO 3 . 2Н 2 O, MgSO 3 . 6H 2 O и др.

Безводные сульфиты при нагревании без доступа воздуха в запаянных сосудах диспропорционируют на сульфиды и сульфаты, при нагревании в токе N 2 теряют SO 2 , а при нагревании на воздухе легко окисляются до сульфатов. С SO 2 в водной среде средние сульфиты образуют гидросульфиты. Сульфиты - относительно сильные восстановители, окисляются в растворах хлором, бромом, Н 2 О 2 и др. до сульфатов. Разлагаются сильными кислотами (например, НС1) с выделением SO 2 .

Кристаллические гидросульфиты известны для К, Rb, Cs, NH 4 +, они малоустойчивы. Остальные гидросульфиты существуют только в водных растворах. Плотность NH 4 HSO 3 2,03 г/см3; растворимость в воде (г в 100 г): NH 4 HSО 3 71,8 (0°С), КНSO 3 49 (20 °С).

При нагревании кристаллических гидросульфитов Na или К либо при насыщении SO 2 кишящего раствора пульпы M 2 SO 3 , образуются пиросульфиты (устаревшее -метабисульфиты) М 2 S 2 O 5 - соли неизвестной в свободном состоянии пиросернистой кислоты H 2 S 2 O 5 ; кристаллы, малоустойчивы; плотность (г/см3): Na 2 S 2 O 5 1,48, К 2 S 2 O 5 2,34; выше ~ 160 °С разлагаются с выделением SO 2 ; растворяются в воде (с разложением до HSO 3 -), растворимость (г в 100 г): Na 2 S2O 5 64,4, К 2 S 2 O 5 44,7; образуют гидраты Na 2 S 2 O 5 . 7H 2 O и ЗК 2 S 2 O 5 . 2Н 2 О; восстановители.

Средние сульфиты щелочных металлов получают взаимодействием водного раствора М 2 СО 3 (или МОН) с SO 2 , a MSO 3 - пропусканием SO 2 через водную суспензию MCO 3 ; используют в основном SO 2 из отходящих газов контактных сернокислотных производств. Сульфиты применяют при отбеливании, крашении и печатании тканей, волокон, кож для консервирования зерна, зеленых кормов, кормовых промышленных отходов (NaHSO 3 , Na 2 S 2 О 5). CaSO 3 и Са(НSO 3) 2 - дезинфицирующие средства в виноделии и сахарной промышленности. NaНSO 3 , MgSO 3 , NН 4 НSO 3 - компоненты сульфитного щелока при варке целлюлозы; (NH 4) 2SO 3 - поглотитель SO 2 ; NaHSO 3 - поглотитель H 2 S из отходящих газов производств, восстановитель в производстве сернистых красителей. K 2 S 2 O 5 - компонент кислых фиксажей в фотографии, антиоксидант, антисептик.

1) металла с неметаллом: 2Na + Cl 2 = 2NaCl

2) металла с кислотой: Zn + 2HCl = ZnCl 2 + H 2

3) металла с раствором соли менее активного металла Fe + CuSO 4 = FeSO 4 + Cu

4) основного оксида с кислотным оксидом: MgO + CO 2 = MgCO 3

5) основного оксида с кислотой CuO + H 2 SO 4 = CuSO 4 + H 2 O

6) основания с кислотным оксидом Ba(OH) 2 + CO 2 = BaCO 3 + H 2 O

7) основания с кислотой: Ca(OH) 2 + 2HCl = CaCl 2 + 2H 2 O

8) соли с кислотой: MgCO 3 + 2HCl = MgCl 2 + H 2 O + CO 2

BaCl 2 + H 2 SO 4 = BaSO 4 + 2HCl

9) раствора основания с раствором соли: Ba(OH) 2 + Na 2 SO 4 = 2NaOH + BaSO 4

10) растворов двух солей 3CaCl 2 + 2Na 3 PO 4 = Ca 3 (PO 4) 2 + 6NaCl

2. Получение кислых солей:

1. Взаимодействие кислоты с недостатком основания. KOH + H 2 SO 4 = KHSO 4 + H 2 O

2. Взаимодействие основания с избытком кислотного оксида

Ca(OH) 2 + 2CO 2 = Ca(HCO 3) 2

3. Взаимодействие средней соли с кислотой Ca 3 (PO 4) 2 + 4H 3 PO 4 = 3Ca(H 2 PO 4) 2

3. Получение основных солей:

1. Гидролиз солей, образованных слабым основанием и сильной кислотой

ZnCl 2 + H 2 O = Cl + HCl

2. Добавление (по каплям) небольших количеств щелочей к растворам средних солей металлов AlCl 3 + 2NaOH = Cl + 2NaCl

3. Взаимодействие солей слабых кислот со средними солями

2MgCl 2 + 2Na 2 CO 3 + H 2 O = 2 CO 3 + CO 2 + 4NaCl

4. Получение комплексных солей:

1. Реакции солей с лигандами: AgCl + 2NH 3 = Cl

FeCl 3 + 6KCN] = K 3 + 3KCl

5. Получение двойных солей:

1. Совместная кристаллизация двух солей:

Cr 2 (SO 4) 3 + K 2 SO 4 + 24H 2 O = 2 + NaCl

4. Окислительно-восстановительные реакции, обусловленные свойствами катиона или аниона. 2KMnO 4 + 16HCl = 2MnCl 2 + 2KCl + 5Cl 2 + 8H 2 O

2. Химические свойства кислых солей:

Термическое разложение с образованием средней соли

Ca(HCO 3) 2 = CaCO 3 + CO 2 + H 2 O

Взаимодействие со щёлочью. Получение средней соли.

Ba(HCO 3) 2 + Ba(OH) 2 = 2BaCO 3 + 2H 2 O

3. Химические свойства основных солей:

Термическое разложение. 2 CO 3 = 2CuO + CO 2 + H 2 O

Взаимодействие с кислотой: образование средней соли.

Sn(OH)Cl + HCl = SnCl 2 + H 2 O Хими́ческий элеме́нт - совокупность атомов с одинаковым зарядом ядра и числом протонов, совпадающим с порядковым (атомным) номером в таблице Менделеева . Каждый химический элемент имеет свои название и символ, которые приводятся в Периодической системе элементов Менделеева .

Формой существования химических элементов в свободном виде являются простые вещества (одноэлементные).

На данный момент (март 2013 года) известно 118 химических элементов (из них не все официально признаны).

Химические вещества могут состоять как из одного химического элемента (простое вещество), так и из разных (сложное вещество или химическое соединение).

Химические элементы образуют около 500 простых веществ . Способность одного элемента существовать в виде различных простых веществ, отличающихся по свойствам, называется аллотропией. В большинстве случаев названия простых веществ совпадают с названием соответствующих элементов (например, цинк, алюминий, хлор), однако в случае существования нескольких аллотропных модификаций названия простого вещества и элемента могут отличаться, например кислород (дикислород, O 2) и озон (O 3); алмаз,графит и ряд других аллотропных модификаций углерода существуют наряду с аморфными формами углерода.

Подтвержденная экспериментально в 1927 г. двойственная природа электрона, обладающего свойствами не только частицы, но и волны, побудила ученых к созданию новой теории строения атома, учитывающей оба этих свойства. Современная теория строения атома опирается на квантовую механику.

Двойственность свойств электрона проявляется в том, что он, с одной стороны, обладает свойствами частицы (имеет определенную массу покоя), а с другой - его движение напоминает волну и может быть описано определенной амплитудой, длиной волны, частотой колебаний и др. Поэтому нельзя говорить о какой-либо определенной траектории движения электрона - можно лишь судить о той или иной степени вероятности его нахождения в данной точке пространства.

Следовательно, под электронной орбитой следует понимать не определенную линию перемещения электрона, а некоторую часть пространства вокруг ядра, в пределах которого вероятность пребывания электрона наибольшая. Иными словами электронная орбита не характеризует последовательность перемещения электрона от точки к точке, а определяется вероятностью нахождения электрона на определенном расстоянии от ядра.

О наличии волновых свойств электрона первым высказался французский уч¨ный Л. де Бройль. Уравнение де Бройля: =h/mV. Если электрон обладает волновыми свойствами, то пучок электронов должен испытывать действие явлений дифракции и интерференции. Волновая природа электронов подтвердилась при наблюдении дифракции электронного пучка в структуре кристаллической реш¨тки. Поскольку электрон обладает волновыми свойствами, положение его внутри объ¨ма атома не определено. Положение электрона в атомном объ¨ме описывается вероятностной функцией, если е¨ изобразить в тр¨хмерном пространстве, то получим тела вращения (Рис).

Которые состоят из аниона (кислотного остатка) и катиона (атом металла). В большинстве случаев это кристаллические вещества различной окраски и с разной растворимостью в воде. Простейший представитель данного класса соединений - (NaCl).

Соли делятся на кислые, нормальные и основные.

Нормальные (средние) образуются в случаях, когда в кислоте все атомы водорода замещаются на атомы металла или когда все гидроксильные группы основы замещаются на кислотные остатки кислот (например, MgSO4, Mg (CH3COO) 2). При электролитической диссоциации они разлагаются на положительно заряженные анионы металлов и отрицательно заряженные кислотные остатки.

Химические свойства солей данной группы:

Разлагаются при воздействии высоких температур;

Подвергаются гидролизу (взаимодействие с водой);

Вступают в реакции обмена с кислотами, другими солями и основаниями. При этом следует помнить некоторые особенности данных реакций:

Реакция с кислотой проходит лишь тогда, когда эта чем та, от которой происходит соль;

Реакция с основанием проходит в случае, когда образуется нерастворимое вещество;

Солевой раствор реагирует с металлом, если он стоит в электрохимическом ряду напряжений левее металла, который входит в состав соли;

Солевые соединения в растворах взаимодействуют друг с другом, если при этом образуется нерастворимый продукт обмена;

Редокс, что можно связать со свойствами катиона или аниона.

Кислые соли получают в случаях, когда лишь часть атомов водорода в кислоте замещается на атомы металлов (например, NaHSO4, CaHPO4). При электролитической диссоциации они образуют катионы водорода и металла, анионы кислотного остатка, поэтому химические свойства солей данной группы включают следующие признаки как солевых, так и кислотных соединений:

Подвергаются термическому разложению с образованием средней соли;

Взаимодействуют со щелочью, образуя нормальную соль.

Основные соли получают в случаях, когда лишь часть гидроксильных групп основ замещается на кислотные остатки кислот (например, Cu (OH) или Cl, Fe (OH) CO3). Такие соединения диссоциируют на катионы металлов и анионы гидроксила и кислотного остатка. Химические свойства солей данной группы включают характерные химические признаки и солевых веществ, и основ одновременно:

Характерно термическое разложение;

Взаимодействуют с кислотой.

Существует еще понятие комплексных и

Комплексные содержат комплексный анион или катион. Химические свойства солей такого типа включают реакции разрушения комплексов, сопровождающиеся образованием малорастворимых соединений. Кроме этого, они способны обмениваться лигандами между внутренней и внешней сферой.

Двойные же имеют два различных катиона и могут реагировать с растворами щелочей (реакция восстановления).

Способы получения солей

Данные вещества можно получить следующими способами:

Взаимодействием кислот с металлами, которые способны вытеснять атомы водорода;

При реакции основ и кислот, когда гидроксильные группы основ обмениваются с кислотными остатками кислот;

Действием кислот на амфотерные и соли или металлы;

Действием оснований на кислотные оксиды;

Реакцией между кислотными и основными оксидами;

Взаимодействием солей между собой или с металлами ;

Получение солей при реакциях металлов с неметаллами;

Кислые солевые соединения получают при реакции средней соли с одноименной кислотой;

Основные солевые вещества получают путем взаимодействия соли с небольшим количеством щелочи.

Итак, соли можно получить многими способами, так как они образуются в результате многих химических реакций между различными неорганическими веществами и соединениями.

1. Соли являются электролитами.

В водных растворах соли диссоциируют на положительно заряженные ионы (катионы) металлов и отрицательно заряженные ионы (анионы) кислотных остатков.

Например , при растворении кристаллов хлорида натрия в воде положительно заряженные ионы натрия и отрицательно заряженные ионы хлора, из которых образована кристаллическая решётка этого вещества, переходят в раствор:

NaCl → Na + + Cl − .

При электролитической диссоциации сульфата алюминия образуются положительно заряженные ионы алюминия и отрицательно заряженные сульфат-ионы:

Al 2 SO 4 3 → 2 Al 3 + + 3 SO 4 2 − .

2. Соли могут взаимодействовать с металлами.

В ходе реакции замещения, протекающей в водном растворе, химически более активный металл вытесняет менее активный.

Например , если кусочек железа поместить в раствор сульфата меди, он покрывается красно-бурым осадком меди. Раствор постепенно меняет цвет с синего на бледно-зелёный, поскольку образуется соль железа(\(II\)):

Fe + Cu SO 4 → Fe SO 4 + Cu ↓ .

Видеофрагмент:

При взаимодействии хлорида меди(\(II\)) с алюминием образуются хлорид алюминия и медь:
2 Al + 3Cu Cl 2 → 2Al Cl 3 + 3 Cu ↓ .

3. Соли могут взаимодействовать с кислотами.

Протекает реакция обмена, в ходе которой химически более активная кислота вытесняет менее активную.

Например , при взаимодействии раствора хлорида бария с серной кислотой образуется осадок сульфата бария, а в растворе остаётся соляная кислота:
BaCl 2 + H 2 SO 4 → Ba SO 4 ↓ + 2 HCl .

При взаимодействии карбоната кальция с соляной кислотой образуются хлорид кальция и угольная кислота, которая тут же разлагается на углекислый газ и воду:

Ca CO 3 + 2 HCl → CaCl 2 + H 2 O + CO 2 ⏟ H 2 CO 3 .

Видеофрагмент:

4. Растворимые в воде соли могут взаимодействовать со щелочами.

Реакция обмена возможна в том случае, если в результате хотя бы один из продуктов является практически нерастворимым (выпадает в осадок).

Например , при взаимодействии нитрата никеля(\(II\)) с гидроксидом натрия образуются нитрат натрия и практически нерастворимый гидроксид никеля(\(II\)):
Ni NO 3 2 + 2 NaOH → Ni OH 2 ↓ + 2Na NO 3 .

Видеофрагмент:

При взаимодействии карбоната натрия (соды) с гидроксидом кальция (гашёной известью) образуются гидроксид натрия и практически нерастворимый карбонат кальция:
Na 2 CO 3 + Ca OH 2 → 2NaOH + Ca CO 3 ↓ .

5. Растворимые в воде соли могут вступать в реакцию обмена с другими растворимыми в воде солями, если в результате образуется хотя бы одно практически нерастворимое вещество.

Например , при взаимодействии сульфида натрия с нитратом серебра образуются нитрат натрия и практически нерастворимый сульфид серебра:
Na 2 S + 2Ag NO 3 → Na NO 3 + Ag 2 S ↓ .

Видеофрагмент:

При взаимодействии нитрата бария с сульфатом калия образуются нитрат калия и практически нерастворимый сульфат бария:
Ba NO 3 2 + K 2 SO 4 → 2 KNO 3 + BaSO 4 ↓ .

6. Некоторые соли при нагревании разлагаются.

Причём химические реакции, которые протекают при этом, можно условно разделить на две группы:

  • реакции, в ходе которых элементы не изменяют степень окисления,
  • окислительно-восстановительные реакции.

A. Реакции разложения солей, протекающие без изменения степени окисления элементов.

В качестве примеров таких химических реакций рассмотрим, как протекает разложение карбонатов.

При сильном нагревании карбонат кальция (мел, известняк, мрамор) разлагается, образуя оксид кальция (жжёную известь) и углекислый газ:
CaCO 3 ⇄ t ° CaO + CO 2 .

Видеофрагмент:

Гидрокарбонат натрия (пищевая сода) при небольшом нагревании разлагается на карбонат натрия (соду), воду и углекислый газ:
2 NaHCO 3 ⇄ t ° Na 2 CO 3 + H 2 O + CO 2 .

Видеофрагмент:

Кристаллогидраты солей при нагревании теряют воду. Например, пентагидрат сульфата меди(\(II\)) (медный купорос), постепенно теряя воду, превращается в безводный сульфат меди(\(II\)):
CuSO 4 ⋅ 5 H 2 O → t ° Cu SO 4 + 5 H 2 O .

При обычных условиях образовавшийся безводный сульфат меди можно превратить в кристаллогидрат:
CuSO 4 + 5 H 2 O → Cu SO 4 ⋅ 5 H 2 O

Видеофрагмент:

Разрушение и образование медного купороса

Основания могут взаимодействовать:

  • с неметаллами -

    6KOH + 3S → K2SO 3 + 2K 2 S + 3H 2 O;

  • с кислотными оксидами -

    2NaOH + CO 2 → Na 2 CO 3 + H 2 O;

  • с солями (выпадение осадка, высвобождение газа) -

    2KOH + FeCl 2 → Fe(OH) 2 + 2KCl.

Существую также другие способы получения:

  • взаимодействие двух солей -

    CuCl 2 + Na 2 S → 2NaCl + CuS↓;

  • реакция металлов и неметаллов -
  • соединение кислотных и основных оксидов -

    SO 3 + Na 2 O → Na 2 SO 4 ;

  • взаимодействие солей с металлами -

    Fe + CuSO 4 → FeSO 4 + Cu.

Химические свойства

Растворимые соли являются электролитами и подвержены реакции диссоциации. При взаимодействии с водой они распадаются, т.е. диссоциируют на положительно и отрицательно заряженные ионы - катионы и анионы соответственно. Катионами являются ионы металлов, анионами - кислотные остатки. Примеры ионных уравнений:

  • NaCl → Na + + Cl − ;
  • Al 2 (SO 4) 3 → 2Al 3 + + 3SO 4 2− ;
  • CaClBr → Ca2 + + Cl - + Br - .

Помимо катионов металлов в солях могут присутствовать катионы аммония (NH4 +) и фосфония (PH4 +).

Другие реакции описаны в таблице химических свойств солей.

Рис. 3. Выделение осадка при взаимодействии с основаниями.

Некоторые соли в зависимости от вида разлагаются при нагревании на оксид металла и кислотный остаток или на простые вещества. Например, СаСO 3 → СаO + СО 2 , 2AgCl → Ag + Cl 2 .

Что мы узнали?

Из урока 8 класса химии узнали об особенностях и видах солей. Сложные неорганические соединения состоят из металлов и кислотных остатков. Могут включать водород (кислые соли), два металла или два кислотных остатка. Это твёрдые кристаллические вещества, которые образуются в результате реакций кислот или щелочей с металлами. Реагируют с основаниями, кислотами, металлами, другими солями.