Какие деревья меняют цвет листьев осенью. Какое значение имеет листопад в жизни растений? Что дает растению это явление? Почему листья меняют цвет

Какие деревья меняют цвет листьев осенью. Какое значение имеет листопад в жизни растений? Что дает растению это явление? Почему листья меняют цвет

Какое значение имеет листопад в жизни растений? Большое. Листья сделали свою работу по обеспечению дерева питательными веществами на протяжении всей весны и лета и теперь могут уйти.

Какое значение имеет листопад в жизни растений? Важное. Если листья останутся на деревьях или кустах, то послужат причиной их гибели.

Какое значение имеет листопад в жизни растений? Философское. Листья умирают и освобождают место для новых побегов.

Какое значение имеет листопад в жизни растений? Эстетическое. Падающие листья - самое красивое явление в мире деревьев.

Осень

Листья большинства кустарников и деревьев меняют окраску и опадают. Они словно соперничают в красоте. Но у таких растений, как ольха, молодой тополь, сирень, листья до заморозков окраску не меняют и остаются зелеными. А по первому снегу чернеют.

Некоторые травянистые представители - анютины глазки, пастушья сумка, мятлик однолетний - цветут до глубокой осени.

Периодические явления, такие как цветение или листопад, у растений вызваны сезонными изменениями.

Зима

С наступлением осени все живое готовится к зиме. Жизнь растений тоже замирает. Они в зимний период находятся в состоянии покоя - не растут, не питаются, не живут в полной мере, но существуют. А с наступлением весны и началом сокодвижения растения получают новые силы и возрождаются. Пережить длинный период покоя становится возможным благодаря запасам питательных веществ, о которых «позаботились» в том числе и листья. С наступлением холодов они становятся ненужными растениям. Более того, могут стать причиной их гибели.

Листья испаряют влагу летом и могли бы это делать зимой (как сушится белье на морозе). Таким образом, они бы обезводили дерево, и оно было бы обречено. Листопад в жизни растений жизненно необходим. Предохраняя себя от высыхания и гибели, деревья и кустарники сбрасывают отмершие части еще до наступления холодов.

Осенние листья

Перед опаданием они отдают растению. У основания черешка листа образуется пробка, и он отмирает. Затем отделяется от ветки под собственной тяжестью или от порыва ветра. Значение листопада в жизни растений трудно переоценить. Без него погибла бы огромная часть флоры, остались бы только хвойные и тропические экземпляры.

Вечнозеленые растения

Для них характерна неизменная окраска листьев. Это не означает, что они живут вечно. У вечнозеленых культур листопад позволяет растениям постоянно обновляться. Они теряют отмершие части на протяжении всей вегетации, как человек волосы. У вечнозеленых растений старые листья опадают. Более молодые сохраняются в неизменном цвете.

Тропические вечнозеленые растения характеризуются листьями, продолжительность вегетации которых составляет несколько лет или месяцев. Хотя встречаются и экземпляры, на короткое время остающиеся с голыми стволами.

Сколько живут листья

Продолжительность их жизни неодинакова и может составлять от 14 дней до 20 лет. Листья в сравнении с корнем и стеблями живут существенно меньше. Это объясняется тем, что они функционируют очень активно и не имеют возможности обновляться.

У вечнозеленых растений средней полосы России, таких как ель и сосна, хвоинки опадают через 5-7 лет у первой и через 2-4 года у второй.

Продолжительность листопада тоже неодинакова. У березы этот период длится примерно два месяца, а липе достаточно всего двух недель.

Почему листья меняют цвет

О том, что дерево готовится к зиме, становится видно по изменению окраски листьев. Они великолепны в своем увядании - желтые, красные, бурые, оранжевые с различными переходами и оттенками. Становится грустно, когда вся эта красота облетает и покрывает сплошным ковром землю.

Листопад - это биологический процесс, который заложен в жизнедеятельности и развитии растения. Снижается интенсивность всех внутриклеточных процессов (фотосинтез, дыхание), уменьшается содержание питательных веществ (рибонуклеиновой кислоты, азотных и калийных соединений). Гидролиз начинает преобладать над синтезом веществ, клетки накапливают продукты распада Более ценные пластичные и минеральные соединения из листьев уходят в запасники растения.

Большинство кустарников и деревьев становятся осенью багряными и желтыми. Красные оттенки обусловлены накоплением в клетках пигмента антоциана, реагирующего на кислоту и меняющего цвет на пурпурный оттенок. В щелочной среде он стал бы голубовато-синим.

Желтая окраска листьев зависит от пигментов (каротина, ксантофилла) и клеточного сока (флавоны). Вот так, очень прозаично, объясняется красота осеннего леса.

Удобрение

Роль листопада в жизни растений очень существенна. Он защищает корни от вымерзания. Пышная лесная подстилка, благодаря рыхлости и наличию большого количества воздуха, уменьшает теплопроводность грунта и препятствует его глубокому промерзанию в зимний период.

Кроме того, она достаточно влагоемка, что немаловажно для растений. Опавшие листья служат мульчирующим материалом, предохраняют почву от эрозии и препятствуют образованию корки. Перегнившие, они улучшают структуру грунта и привлекают земляных червей.

Опавшие листья являются ценным органическим удобрением с содержанием фосфора, калия, кальция, азотистых веществ и полезных микроэлементов. Таким образом создаются благоприятные условия для растений. В лесах вырастают громадные деревья без внесения каких-либо удобрений.

Опавшие листья в саду

Современный садовод не ценит крестьянский опыт прошлых лет. Он ежегодно сжигает столько удобрений и структурного материала, сколько хватило бы и на компост, и на мульчирование. Одни садоводы не сберегают листья по незнанию, другие боятся распространения инфекций. Но если подойти к этому вопросу разумно, то все их опасения напрасны.

Дело в том, что возбудители болезней погибают при созревании компоста и переработке его дождевыми червями. Следовательно, листья плодовых культур целесообразно закладывать для получения перегноя, а здоровую подушку из-под березы, липы, каштана, клена и др. оставить для мульчирования на следующий летний период.

Укрытие такого рода станет спасением для ценных растений в бесснежные зимы. Например, для земляники, нарциссов, новых посадок.

Весной опавшими сухими листьями можно мульчировать посадки перцев, баклажанов и томатов в теплицах и парниках. Этим культурам требуется сухой воздух и влажная почва. Толстый слой сухих листьев создаст необходимый микроклимат, станет препятствием росту сорняков, и все лето будет радовать в отдельно взятой теплице.

Ранний урожай

Ценные свойства листопада можно применять для выращивания ранних урожаев овощей (огурцов, картофеля, капусты, кабачков и проч.) или для ускоренной посадки земляничных кустов, цветов. С осени готовят неглубокие, на штык лопаты, траншеи. Потом заполняют их здоровой опавшей листвой и проливают раствором навозной жижи. Сверху кладут сочные листья капусты, ботву корнеплодов и т. д. В таком виде оставляют траншеи на зиму. Вынутую землю оставляют рядом в виде гребня.

За зиму содержимое траншеи осядет, напитается талой водой и уплотнится. Земля в гребне под ярким солнцем оттает и прогреется быстрее. Как только позволит почва, валик загребают в траншею и высаживают ранние овощи. Можно соорудить небольшой пленочный тоннель над молодыми растениями, чтобы уберечь их от заморозков.

Который наглядно покажет детям, почему листья на редевьях меняют цвет: летом они зеленые, а осенью желтеют.

Для проведения этого вам не нужны особенные материалы - все есть как дома, так и в школе. Этот опыт, объясняющий, почему листья на даревьях меняют осенью окраску, отлично подходит для дошкольников и учеников от 1-6 класса.

Многие люди считают самым красивым времением года, ведь когда листья желтеют, природа окрашивается в такие невероятные оттенки, одновременно хранящие память о теплом лете, но навевающие холод от приближения зимы.

А вот у детей по осень часто возникает ряд традиционных вопросов:

  • Почему осенью листья на деревьях меняют цвет и желтеют?
  • Это проделки фей?
  • А что с солнцем?
  • А, я знаю, это садовый гном сделал

Этот , который объясняет, почему листья осенью становятся желтыми или красными, наверняка удовлетворит даже самых любопытных детей.

Зачем дереву нужны листья

Для того, чтобы понять, почему листья меняют цвет осенью, нужно разобраться в том, зачем вообще нужны деревья, и листья в чатности.

Растения ответственны за создание кислорода, которым мы дышим. Они его производят, поглощая воду из земли и углекислый газ из воздуха. Используя солнечный свет (через фотосинтез), они превращают воду и углекислый газ в кислород и глюкозу. Кислород - это то, что позволяет нам дышать, а глюкоза - то, что растение использует для роста. Термин фотосинтез означает «соединять со светом». Химическое вещество в растении, используемое для фотосинтеза, называется хлорофилл. Тот самый хлорофилл, который придает растениям зеленый цвет.

Что понадобится для эксперимента :

  • Стеклянные баночки
  • Кофейные фильтры
  • Листья
  • Спирт
  • Блокнот и ручка для ведения наблюдений

Почему листья осенью меняют цвет? Эксперимент для детей

Для того, чтобы найти ответ на вопрос, почему осенью листья на деревьях меняют цвет и желтеют, детям нужно будет собрать немного листьев.

После чего вы вместе должны рассортировать их по цветам в подготовленные контейнеры.

После этого листья заливаются спиртом и перемалываются. После измельчения и перемешивания спирт поможет цвету еще лучше проявиться.


Подсказка: время полного поглощения цвета будет зависеть от того, сколько листьев и спирта было использовано.


Спустя 12 часов жидкость может еще не до конца впитаться, но эффект уже очевиден. По мере того, как жидкость впитывается в фильтр, цвета из листочков расходятся.

Объяснение эксперимента, почему листья меняют цвет

Зимой дни становятся короче, что уменьшает количество солнечного света для листьев. Из-за недостатка солнца, растения переходят в стадию покоя и питаются глюкозой, которую накопили за лето. Как только включается «зимний режим», зеленый цвет хлорофилла листья покидает. А по мере того как яркий зеленый оттенок исчезает, мы начинаем видеть желтые и оранжевые цвета. Небольшое количество этих пигментов было в листьях все время. Например, кленовые листы ярко красные, так как в них есть избыток глюкозы.

Если вам понравился с листьями, которые меняют цвет осенью, совсем не обязательно ждать начала уроков, чтобы провести его вместе с детьми.

Осенью лиственные леса и сады меняют цвет листьев. На место монотонной летней окраски выступает большое разнообразие ярких тонов.

Листья грабов, кленов и берез становятся светло-желтыми, дубов–буровато-желтыми, вишни, рябины и барбариса–пун­цово-красными, черемухи – пурпуровыми, бирючины и берескле­та – фиолетовыми, осины – оранжевыми, ольхи – мутного бу­ро-зеленого оттенка.

Осенняя перемена окраски листьев не ограничивается, однако, только деревьями и кустарниками, но простирается и на низко­рослые травы. Листва небольших трав и полукустарников и в особенности карликовых кустарников, образующих мохнатые ковры, приобретает красные, фиолетовые и желтые тона со всеми переходными оттенками, не уступающие в яркости живым цветам.

Изменение окраски объясняется глубокими изменениями жизнедеятельности листо­вых тканей с приближением неблагоприятного зимнего времени. Весной и летом хлоропласты более или менее равномерно распре­деляются в постенном слое протоплазмы. Это обусловливает ярко-зеленую окраску листьев. С наступлением же осенних холодов хлоропласты скучиваются в компактные глыбки, причем, по мне­нию некоторых ученых, происходит обособление протоплазмы от клеточных стенок. Это приводит к изменению ярко-зеленой окраски листьев в темную и тусклую. Такие сезонные изменения окраски хвои отчетливо наблюдаются у наших вечнозеленых хвойных по­род: ели, сосны, можжевельника и др.

У подавляющего большинства деревьев и кустарников холодной и умеренной зоны приспособление к зиме с ее морозами пошло в на­правлении образования листопадных форм, сбрасывающих листву на зиму. Осенняя расцветка листопадных пород есть следствие связанного с этим сезоном отмирания листвы. В листьях, наряду с зеленым пигментом – хлорофил­лом, всегда присутствуют еще желтые пигменты – ксантофилл, каротин и другие, которые за хлорофиллом, как обладающим боль­шею яркостью, бывают невидимы. Осенью у листопадных пород в процессе подготовки листвы к опадению хлорофилл разрушается, а желтые, замаскированные ранее хлорофиллом, пигменты становятся видны. При этом желтые пигменты химически не изменяются.

Иначе обстоит дело с красным, синим и другими осенними цве­тами листвы. Здесь разрушение хлорофилла идет обычным путем, но сюда присоединяется еще образование нового красящего пиг­мента антоциана.

За изменением окраски листьев следует их опадение – осенний листопад. Листопад представляет собой одно из важнейших приспособлений против неблагоприятных для растения зимних условий.

Опадение листьев свойственно всем деревьям и кустарникам и вы­текает из особенностей роста этой группы растений. Старые листья по мере разрастания кроны все сильнее затеняются. Возможность их ассимиляции все более и более падает. Старые листья постепенно отмирают и опадают. Во влажном тропическом климате эта смена листьев происходит постепенно, не будучи приурочена к определен­ному времени года. Каждый лист нередко способен жить и ассими­лировать несколько лет. Деревья и кустарники влажных тропи­ков, как правило, вечнозелены. В нашем северном климате деревья живут и развиваются при ежегодной смене лета и суровой зимы. Естественный отбор выработал в этих условиях строгую сезонную периодичность в сроках листопада, с ежегодным сбрасыванием всей листвы однажды в году – осенью. Таким образом возникла листопадность. Основное значение осеннего листопада состоит в том, что, теряя листья, растения тем самым спасаются от засыхания, которое привело бы к неминуемой гибели. Листья представляют громадную поверхность испарения для содержащейся в растении влаги. В теплое время года эта убыль влаги пополняется равномерно притоком ее из почвы, откуда она всасывается корнями. Но с охлаждением почвы всасывательная деятельность корневых волосков падает; она по­нижается настолько, что хотя испарение влаги листьями вследствие низкой температуры тоже уменьшается, тем не менее, потеря воды растением теперь не может уже возмещаться.

Вода из корней в кроны деревьев может передвигаться и при тем­пературах ниже нуля. Но уже при –6,– 7° скорость этого движе­ния и количество всасываемой воды становятся ничтожными. При дальнейшем понижении температуры ветви промерзают на­цело, ток воды полностью прекращается и потери побегов во влаге от испарения (точнее – возгонки льда) перестают пополняться. Значение осеннего листопада, прежде всего и состоит в резком со­кращении на зиму испаряющей поверхности, а, следовательно, и потерь воды растением.

Утрачивая листья, растения теряют много органических ве­ществ, созданных в течение лета. Однако наиболее ценные из них удаляются, как мы видели, из листьев во внутренние части рас­тения.

Из листьев уходят не только такие запасные питательные веще­ства, как крахмал, сахар, жиры (масла), но и самые главные – белковые вещества, – предварительно распавшись до более про­стых растворимых веществ. Даже наиболее ценные минеральные вещества (например, соединения фосфора), как показывает химический ана­лиз листьев, произведенный перед листопадом, выносятся из ли­стьев. Но наряду с этим удаляются также и некоторые негодные продукты. Так, к концу лета в листьях накопляется большое количество кристаллов щавелевокислой извести. Это вещество представляет собой ненужный продукт обмена веществ. Ввиду этого на осенний листопад можно смотреть и как на выделительную функцию растения, совер­шающуюся раз в год, но зато в грандиозном масштабе.

Существует и другое направле­ние приспособлений, приведшее к листопадности, – приспособле­ние к перенесению знойно-засушливого времени года. Наивысшего развития этот тип листопадности приобретает в тропиках – в са­ваннах. Но и в пределах СНГ в зонах пустынь и полупустынь большое значение имеет летний листопад в начале знойно-засушли­вого периода. Летний листопад наблюдается и у многих полукустарников, например, у полыней и ряда солянок. Осенью, при наличии дождей листообразование у этих растений возобновляется. Биологическое значение летнего листопада тоже, что и осеннего – предохранение растения от засыхания.

Механизм листопада заключается в следующем. Перед опадением листьев в основании их черешков появляются слои особых тонкостенных клеток. Это так называемые раздели­тельные слои. Вследствие быстрого размножения этих клеток снаружи, против разделитель­ного слоя появляется вздутие, отличаю­щееся от грубых старых тканей более светлым цветом и некоторой прозрач­ностью. Когда разделительные слои до­стигнут соответствующей толщины, их тонкостенные клетки отделяются одна от другой, причем оболочки нигде не разрываются и не повреждаются. По всей вероятности, соединяющее их меж­клеточное вещество растворяется орга­ническими кислотами, благодаря чему связь между клетками нарушается и листья опадают. Это происходит даже само собой, при отсутствии внешних побудительных причин.

Разделитель­ный слой иногда обра­зуется не в нижней ча­сти черешка, а распола­гается так, что от че­решка остается малень­кий чешуеобразный остаток, который служит защитой для развивающейся в его пазухе почки, например, у жасмина. У листьев слож­ных разделительный слой, кроме основания главного черешка, возникает еще ниже каждого листочка. Поверхность на месте отделения черешка затягивается пробковым слоем и всегда бывает гладкой и определенной формы для каждого вида растения.

Для размножения клеток, образующих разделительный слой, требуется определенная температура внешней среды. Рано и внезапно наступающие в некоторые годы морозы могут воспрепятствовать появлению разделительных слоев, и листья тогда замерзают, не успев отпасть. В такие годы на многих деревьях в течение всей зимы остаются сухие, побуревшие листья.

Время появления разделительного слоя оказывается зависящим от длины периода дневного освещения: чем он короче, тем скорее появляется разделительный слой. Таким образом, уко­рачивание дня к осени является одним из факторов, стимулирующих сбрасывание листьев.

Посредством изменения в тканях, подобных описанному, отде­ляются также иногда лепестки цветков, тычинки, самые цветки, оставшиеся неопыленными, спелые плоды, листовые черешки, если оторвать от них пластинки и т. д. Следовательно, листопад представляет только частный случай из ряда однородных явлений.

Продолжительность листопада различных деревьев неодина­кова. Так, у гинкго листопад продолжается всего несколько дней, а у грабов и дубов – несколько недель, причем осе­нью у этих деревьев опадает лишь часть листьев, а остальные опадают только в конце зимы. Существует разница еще в следующем отношении. У одних деревьев от листьев начинают обнажаться крайние ветви, и отсюда уже листопад постепенно доходит до основания; у других же он имеет обратное направление. Примером первого порядка служат ясени, лещины и буки, а второго – липы, ивы, тополя, груши.

9. Влияние абиотических факторов на рост и развитие растений

Температура

Особенности развития растений в филогенезе складывались в течение многих тысячелетий под постоянным воздействием факторов внешней среды. Характерной особенностью климата умеренного пояса является наличие холодного периода года, прерывающего вегетацию растений. У большинства растений, биологические свойства которых сложились в условиях умеренного климата, нижний предел температуры для развития близок к 5°. Связь скорости развития этих растений с температурой воздуха может быть выражена уравнением: n(t – 5°) = А, где п – число дней в данном периоде, t – средняя температура воздуха за этот период. Величину (t – 5°) называют средней эффективной температурой за период, 5° – нижним пределом эффективной температуры для растений умеренного климата, А – суммой эффективных температур за период или суммой разностей между средней суточной температурой и нулем эффективной температуры.

Суммы эффективных температур за тот или иной период подсчитывают следующим образом: за каждый день периода выписывают средние суточные температуры воздуха и из каждого их значения вычитают 5°, а полученные разности суммируют.

Уровень, на котором находится начальная, температура развития растения, зависит от условий, в которых складывались биологические особенности их в течение очень длительного периода эволюции растительных форм под влиянием изменения термических условий существования. Так, нижние пределы эффективной температуры у растений, сложившихся в условиях тропического и субтропического климатов, находятся на сравнительно высоком уровне: томат - 15°, цитрусовые растения и рис -10°, хлопчатник - около 13° и т. п.

Ускорение темпов развития растения с повышением температуры имеет свой предел. При некоторой температуре, достигнув наибольшей скорости развития, растение сохраняет эту скорость, несмотря на дальнейшее повышение теплового напряжения среды. Например, при средней суточной температуре 18° у озимой ржи период от посева семян до всходов достигает четырех дней, а у озимой и яровой пшеницы - 5 дней. При температурах выше 18° продолжительность этого периода уже не уменьшается.

При наличии необходимых условий для произрастания наступление ранних фаз развития травянистых растений происходит в зависимости от температуры среды. После завершения световой стадии и заложения зачаточного соцветия продолжительность всего репродуктивного периода и его частей зависит только от температуры. Заложение колоса у озимых культур происходит в зависимости от сохранности листьев и стеблевых побегов после перезимовки. При сохранении листьев и главных стеблевых побегов образование колоса (выход в трубку) начинается вскоре после возобновления вегетации.

Таблица 5. Значения сумм эффективных температур для злаков

Темпы развития влияют на продуктивность растений. С увеличением продолжительности периода от колошения до восковой спелости хлебных злаков увеличиваются крупность зерна и его вес. Так, при продолжительности этого периода у яровой пшеницы, некоторых других сортов мягкой пшеницы в 23 дня 1000 зерен в воздушно-сухом состоянии весят около 23 г, а при продолжительности в 50 дней – около 50 г.

Пользуясь суммами эффективных температур как показателями связи скорости развития растений с температурой, можно судить о продолжительности важнейших межфазных периодов, определять ход развития растения, как за истекший, так и на предстоящий периоды и производить другие расчеты.

Деревья и кустарники

На большей части территории России листопадные древесные растения, возникшие в условиях умеренного климата, начинают вегетировать много времени спустя после окончания периода глубокого покоя. В первые дни, когда температура воздуха перейдет через 5 0 , начинается набухание почек. Так как развитие органов, заложенных в почках, происходит за счет запасных веществ, накопленных в предыдущем году, то скорость роста вегетативных органов весною и развитие органов цветения зависит от температуры окружающей среды.

Таблица 6. Значения сумм эффективных температур

для древесных растений

Вот почему суммы эффективных температур, накапливающиеся ко времени зацветания или развертывания первых листьев у каждой древесной породы, сохраняют большое постоянство как в данной местности в разные годы, так и в разных физико-географических условиях.

Типы растений (ботанические системы)
и виды влияния температуры на развитие растений

Фанерофиты – высокоствольные растения, деревья и кустарники, покоящиеся почки которых на побегах находятся высоко над поверхностью почвы и снежного покрова. Начало вегетации их весной зависит, прежде всего, от температуры воздуха. К таким растениям относится береза, дуб, сосна и др.

Хамефиты, или карликовые растения и кустарники, покоящиеся почки которых находятся над поверхностью почвы, но зимуют под снегом (например, черника, брусника, вереск).

Хемикриптофиты. Почки зимуют под снежным покровом и отмершими частями растений (например, озимые хлеба, земляника, ревень, львиный зев, примула и др.). Начало вегетации связано с таянием снежного покрова и повышением температуры приземных слоев воздуха.

Криптофиты – многолетники. Почки зимуют в почве в луковицах и на клубнях.

Терофиты – однолетники, перезимовывающие в виде семян. К ним относится большинство культурных растений. Криптофиты и терофиты начинают прорастать при достаточном прогревании верхних слоев почвы.

На отдельные стадии развития оказывают влияние сезонные изменения погоды. Так, у раноцветущих деревьев и кустарников цветочные почки закладываются в предыдущее лето, погодные условия которого влияют на их развитие. Развитие растений, цветущих весной, зависит главным образом от температуры предшествующего цветению периода. К ним вполне возможно применение правила суммы температур. Для летнего цветения, кроме суммы температур, имеет значение распределение влажности воздуха. Запас питательных веществ в растениях также имеет большое значение. Древесные и луковичные растения, содержащие значительные запасы питания, менее подвержены влиянию внешних условий.

Только принимая во внимание ботанические особенности растений, можно разрешить вопрос взаимосвязи температурных и других климатических условий с ростом и развитием растений.

Солнечный свет является источником энергии для растения при синтезе органических веществ. Необходимым условием при этом является наличие определенной температуры. Интенсивная радиация при одинаковых температурных условиях усиливает синтез и ускоряет развитие. В областях, отличающихся продолжительностью и интенсивностью солнечного сияния, наблюдается ускоренное развитие растений.

Для радиации, как и для температуры можно вычислить суммарное значение за определенные периоды развития растений.

Геслин изучал влияние солнечной радиации на развитие растений в связи с температурой. Он ввел понятие гелиотермической константы, являющейся функцией температуры и радиации. При недостатке данных по измерению радиации он использовал в качестве показателя радиации длину дня. Такая связь радиации с температурой при исследовании процессов развития растений дает лучшие результаты, чем влияние сумм температур или сумм радиации, взятых отдельно.

Большое значение для организмов имеет не только интенсивность солнечного излучения, но и продолжительность длины светового периода. Реакция организмов на сезонные изменения длины дня называется фотопериодизмом (термин предложен в 1920 г. У. Гарнером и Х. Аллардом). Проявление фотопериодизма зависит не от интенсивности освещения, а только от ритма чередования темного и светлого периодов суток.

Фотопериодическая реакция живых организмов имеет большое приспособительное значение, так как для подготовки к переживанию неблагоприятных условий или, наоборот, к наиболее интенсивной жизнедеятельности требуется довольно значительное время. Способность реагировать на изменение длины дня обеспечивает заблаговременные физиологические перестройки и пригнанность цикла к сезонным сменам условий. Ритм дня и ночи выступает как сигнал предстоящих изменений климатических факторов, обладающих сильным непосредственным воздействием на живой организм (температуры, влажности и др.). В отличие от других экологических факторов ритм освещения влияет лишь на те особенности физиологии, морфологии организмов, которые являются сезонными приспособлениями в их жизненном цикле. Образно говоря, фотопериодизм – это реакция организма на будущность.

Хотя фотопериодизм встречается во всех крупных систематических группах, он свойствен далеко не всем видам. Существует много видов с нейтральной фотопериодической реакцией, у которых физиологические перестройки в цикле развития не зависят от длины дня. У таких видов либо развиты другие способы регулирования жизненного цикла (например, озимость у растений), либо они не нуждаются в точном его регулировании. Например, там, где нет резко выраженных сезонных изменений, большинство видов не обладает фотопериодизмом. Цветение, плодоношение и отмирание листьев у многих тропических деревьев растянуто во времени, и на дереве одновременно встречаются и цветки и плоды. В умеренном климате виды, успевающие быстро завершить жизненный цикл и практически не встречающиеся в активном состоянии в неблагоприятные сезоны года, также не проявляют фотопериодических реакций, например многие эфемерные растения.

Различают два типа фотопериодической реакции: короткодневный и длиннодневный. Известно, что длина светового дня, кроме времени года, зависит от географического положения местности. Короткодневные виды живут и произрастают в основном в низких широтах, а длиннодневные – в умеренных и высоких. У видов с обширными ареалами северные особи могут отличаться по типу фотопериодизма от южных. Таким образом, тип фотопериодизма – это экологическая, а не систематическая особенность вида.

У длиннодневных видов увеличивающиеся весенний и раннелетний дни стимулируют ростовые процессы и подготовку к размножению. Укорачивающиеся дни второй половины лета и осени вызывают торможение роста и подготовку к зиме. Так, морозостойкость клевера и люцерны гораздо выше при выращивании растений на коротком дне, чем на длинном. У деревьев, растущих в городах близ уличных фонарей, осенний день оказывается удлиненным, в результате у них задерживается листопад, и они чаще подвергаются обморожению.

Как показали исследования, короткодневные растения особенно чувствительны к фотопериоду, так как длина дня на их родине меняется в течение года мало, а сезонные климатические изменения могут быть очень значительными. Тропические виды фотопериодическая реакция подготавливает к сухому и дождливому сезонам. Некоторые сорта риса в Шри-Ланке, где общее годовое изменение длины дня составляет не более часа, улавливают даже ничтожную разницу в световом ритме, что определяет время их цветения.

Длина светлого периода суток, обеспечивающая переход в очередную фазу развития, получила название критической длины дня для этой фазы. По мере повышения географической широты критическая длина дня возрастает (табл. 7). Критическая длина дня часто служит препятствием для широтного передвижения организмов, для их интродукции.

Таблица 7. Зависимость критической длины дня

от географической широты

Географическая широта Всходы овса Цветение озимой ржи
48 0 12.46 15.27
54 0 14.26 16.45

Фотопериодизм – наследственно закрепленное, генетически обусловленное свойство. Однако фотопериодическая реакция проявляется лишь при определенном воздействии других факторов среды, например в определенном интервале температур. При некотором сочетании экологических условий возможно естественное расселение видов в несвойственные им широты, несмотря на тип фотопериодизма. Так, в высокогорных притропических районах много растений длинного дня, выходцев из районов умеренного климата.

Для практических целей длину светового дня изменяют при выращивании культур в закрытом грунте. Средние многолетние сроки развития организмов определяются, прежде всего, климатом местности, именно к ним и приспособлены реакции фотопериодизма. Отклонения от этих сроков обусловливаются погодной обстановкой. При изменении погодных условий сроки прохождения отдельных фаз могут в определенных пределах изменяться. Так, растения, не набравшие необходимой суммы эффективных температур, не могут зацвести даже в условиях фотопериода, стимулирующих переход в генеративное состояние. Например, в Подмосковье береза зацветает в среднем 8 мая при накоплении суммы эффективных температур 75°С. Однако в годовых отклонениях сроки ее зацветания изменяются от 19 апреля до 28 мая.

Действие света на растение подразделяется на фотосинтетическое, регуляторно-фотоморфогенетическое и тепловое. Свет действует на рост через фотосинтез‚ для которого требуются высокие уровни энергии. При слабой освещенности растения плохо растут. Однако кратковременный рост происходит даже в темноте, например при прорастании, что имеет приспособительное значение. Удлинение ежедневного освещения в теплицах усиливает рост многих растений. По отношению к интенсивности освещения растения делятся на светолюбивые и теневыносливые.

Свет определяет не только фотопериодизм, но и многие другие фотобиологические явления: фотоморфогенез, фототаксисы, фототропизмы, фотонастии и др. Наиболее активно регулируют рост красные и сине-фиолетовые лучи.

Фотоморфогенез – это зависимые от света процессы роста и дифференцировки растений, определяющие его форму и структуру. В ходе фотоморфогенеза растение приобретает оптимальную форму для поглощения света в конкретных условиях произрастания. Так, на интенсивном свету рост стебля уменьшается. В тени листья вырастают крупнее, чем на свету, что доказывает задерживающее влияние света на рост. В растениях обнаружены две пигментные системы фоторецепторов – фитохром, поглощающий красный свет, и криптохром, поглощающий синий свет, с участием которых индуцируются реакции фотоморфогенеза. Эти пигменты поглощают ничтожную часть падающего солнечного излучения, которая используется для переключения метаболических путей.

Система красный/дальний красный свет. Фотоморфогенети-
ческое воздействие красного света на растение осуществляется через фитохром. Фитохром – хромопротеид, имеющий сине-зеленую окраску. Его хромофор – это незамкнутый тетрапиррол. Белковая часть фитохрома состоит из двух субъединиц. Фитохром существует в растениях в двух формах (Ф 660 и Ф 730), которые могут переходить одна в другую, меняя свою физиологическую активность. При облучении красным светом (КС – 660 нм) фитохром Ф 660 (или Ф к) переходит в форму Ф 730 (или Ф дк). Трансформация приводит к обратимым изменениям конфигурации хромофора и поверхности белка. Форма Ф 730 является физиологически активной, контролирует многие реакции и морфогенетические процессы в растущем растении, темпы метаболизма, активность ферментов, ростовые движения, скорость роста и дифференциации и др. Действие красного света снимается короткой вспышкой дальнего красного света (ДКС – 730 нм). Облучение ДКС переводит фитохром в неактивную (темновую) форму Ф 660 . Активная форма Ф 730 нестабильна, на белом свету медленно распадается. В темноте Ф дк разрушается или под действием дальнего красного света превращается в Ф к. Таким образом, система

составляет комплекс реакций, запускаемых переходом от темно-
ты к свету. Реакции метаболизма растений, управляемые фитохромом, зависят от концентрации Ф 730 и соотношения Ф 730 /Ф 660 . Обычно они начинаются, если 50 % фитохрома представлено формой Ф 730 .

Фитохром обнаружен в клетках всех органов, хотя его больше в меристематических тканях. В клетках фитохром, очевидно, связан с плазмалеммой и другими мембранами.

Фитохром участвует в регуляции многих сторон жизнедеятельности растений: прорастании светочувствительных семян, открытии крючка и удлинении гипокотиля проростков, развертывании семядолей, дифференциации эпидермиса и устьиц, дифференциации тканей и органов, ориентации в клетке хлоропластов, синтезе антоциана и хлорофилла. Красный свет тормозит деление и способствует удлинению клеток, растения вытягиваются, становятся тонкостебельными (густой лес, загущенный посев). Фитохром определяет фотопериодическую реакцию растений, регулирует начало цветения, опадение листьев, старение и переход в состояние покоя. В теплицах красный свет способствует образованию корнеплодов у репы, утолщению стеблеплодов кольраби. Фитохром участвует в регуляции метаболизма фитогормонов в различных органах растения.

Влияние синего света на рост растений. Синий свет также регулирует многие фотоморфогенетические и метаболические реакции растений. Фоторецепторами синего света считаются флавины и каротиноиды. Желтый пигмент рибофлавин, рецептирующий синий – ближний ультрафиолетовый свет, который назвали криптохромом, присутствует у всех растений. В ультрафиолетовой части спектра (320–390 нм), вероятно, работает еще одна рецепторная система, включающая производные пиразино-пиримидина, или птерины. Рецепторы претерпевают редокс-превращения, быстро передавая электроны другим акцепторам. Фототропизм растений определяется рецепторным комплексом стеблевого апекса, включающего, по-видимому, криптохром и каротиноиды. Рецепторы синего света имеются в клетках всех тканей, локализованы в плазмалемме и в других мембранах.

Синие и фиолетовые лучи стимулируют деление, но задерживают растяжение клеток. По этой причине растения высокогорных альпийских лугов обычно низкорослы, часто розеточны. Синий свет вызывает фототропический изгиб проростка и других осевых органов растений путем индукции латерального транспорта ауксина. Растения при недостатке синего цвета в загущенных посевах и посадках вытягиваются, полегают. Это явление имеет место в загущенных посевах и посадках, в теплицах, стекла которых задерживают синие и сине-фиолетовые лучи. Дополнительное освещение синим светом позволяет в теплицах получить высокий урожай листьев салата, корнеплодов редиса. Синий свет влияет также на многие другие процессы: угнетает прорастание семян, открывание устьиц, движение цитоплазмы и хлоропластов, развитие листа и др. Ультрафиолетовые лучи обычно задерживают рост, однако в небольших дозах могут стимулировать его. Жесткий ультрафиолетовый свет (короче 300 нм) обладает мутагенным и даже смертоносным действием, что актуально в связи с утончением озонового слоя Земли.

Механизм действия фоторецепторов. Предложено несколько гипотез механизма регуляторного действия света на растения.

Непосредственное действие на генетический аппарат. Фоторецепторы при возбуждении их светом непосредственно действуют на генетический аппарат растений, способствуя биосинтезу необходимых белков. Так, в ядре и хлоропласте фитохром регулирует синтез соответственно малой и большой субъединиц РДФ-карбоксилазы. В ядерном геноме синий свет ускоряет экспрессию генов комплекса фермента нитратредуктазы.

Регуляция уровня и активности фитогормонов. Принимая во внимание, что фитогормоны являются одним из ближайших к фитохрому звеном метаболической цепи, обеспечивающей рост и морфогенез растения, предполагается следующая последовательность элементов цепи: свет –> фитохром –> геном -> фитогормоны –> общие звенья метаболиз-
ма –> рост и морфогенез. В большинстве случаев КС, повышая в
тканях уровень гиббереллинов и цитокининов, снижает содержание ауксина и этилена. Это действие красного света снимает ДКС. В листьях пшеницы и ячменя КС увеличивает уровень гиббереллинов в результате их синтеза или выхода из этиопластов. ДКС устраняет этот дефект КС.

Влияние на функциональную активность мембран. Основным результатом действия красного света является регуляция функций мембран. Наиболее быстро под действием света изменяются электрические характеристики мембран клеток и тканей облучаемых органов растений, что, по-видимому, вызывает определенный физиологический эффект, в том числе новообразование фитогормонов и активацию некоторых генов.

Прямое влияние света на активность фермента. Оно проявляется в том, что молекула пигмента, являющаяся частью фермента, возбуждается квантом света, вызывая изменение конформации белковой части фермента, а, следовательно, и его активности.

Инициация процессов переноса электронов. Свет включает фоторецепторы и инициирует процессы метаболического переноса электронов в мембранах, тесно связанные с перемещением протонов. Далее образуются соединения, приводящие к конечному физиологическому ответу – действию на рост и морфогенез растений. Электроны, образующиеся при окислении субстрата, могут использоваться в реакциях восстановления, в том числе нитратов, а протоны подкисляют клеточную стенку или остаются в клетке.

Конец работы -

Эта тема принадлежит разделу:

Лекции по физиологии растений

Московский государственный областной университет.. д а климачев.. лекции по физиологии растений Москва климачев д а..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

МОСКВА – 2006
Печатается по решению кафедры ботаники с основами сельского хозяйства. Климачев Д.А. Лекции по физиологии растений. М.: Изд-во МГОУ‚ 2006. – 282 с.

И основные направления исследований
В биосфере главенствующее положение занимает растительный мир-основа жизни на нашей планете. Растение обладает уникальным свойством-способностью накапливать энергии» света в органических веществах

Природа и функции основных химических компонентов растительной клетки
Земная кора и атмосфера содержит более ста химических элементов. Из всех этих элементов лишь ограниченное количество было отобрано в ходе эволюции для форми­рования сложного, высокоорганизованного

Элементарный состав растений
Азот - входит в состав белков, нуклеиновых кислот, фосфолипидов, порфиринов‚ цитохромов, коферментов (НАД, НАДФ). Поступает в растения в виде NО3-, NО2

Углеводы
Углеводы - сложные органические соединения, молекулы которых построены из атомов трех химических элементов: углерода, кислорода, водорода. Углеводы - основ­ной источник энергии для живых систем. Кр

Растительные пигменты
Пигменты - высокомолекулярные природные окрашенные соединения. Из не­скольких сотен пигментов, существующих в природе, важнейшими с биологической точки зрения являются металлопорфириновые и флавино

Фитогормоны
Известно, что жизнь животных контролируется нервной системой и гормонами, но далеко не все знают, что жизнь растений тоже контролируется гормонами, ко­торые называют фитогормонами. Они регулируют ж

Фитоалексины
Фитоалексины - это низкомолекулярные антибиотические вещества высших рас­тений, возникающие в растении в ответ на контакт с фитопатогенами; при быстром дос­тижении антимикробных концентраций они мо

Клеточная оболочка
Клеточная оболочка придает клеткам и тканям растений механическую прочность, защищает протоплазматическую мембрану от разрушения под влиянием гидростатиче­ского давления, развиваемого внутри клетки

Вакуоль
Вакуоль - полость, заполненная клеточ­ным соком и окруженная мембраной (тонопластом). В молодой клетке обычно имеется не­сколько мелких вакуолей (провакуолей). В про­цессе роста клетки образуется о

Пластиды
Различают три вида пластид: хлоропласта - зеленые, хромопласты - оранжевые, лейкопласты - бесцветные. Размер хлоропластов колеблется от 4 до 10 мкм. Число хлоропластов обычно со­ста

Органы, ткани и функциональные системы высших растений
Главная особенность живых организмов заключается в том‚ что они представляют собой открытые системы‚ которые обмениваются с окружающей средой энергией‚ веществом и и

Регуляция активности ферментов
Изостерическая регуляция активности ферментов осуществляется на уровне их каталитических центров. Реакционная способность и направленность работы каталитического центра прежде всего зависят от коли

Генетическая система регуляции
Генетическая регуляция включает в себя регуляцию на уровне репликации‚ транскрипции, процессинга и трансляции. Молекулярные механизмы регуляции здесь те же (рН‚ ноны, модификация молекул, белки-рег

Мембранная регуляция
Мембранная регуляция осуществляется благодаря сдвигам в мембранном транспорте, связыванию или освобождению ферментов и регуляторных белков и путем изменения активности мембранных ферментов. Все фун

Трофическая регуляция
Взаимодействие с помощью питательных веществ - наиболее простой способ связи между клетками, тканями и органами. У растений корни и другие гетеротрофные органы зависят от поступления ассимилятов‚ о

Электрофизиологическая регуляция
Растительные организмы в отличие от животных не имеют нервной системы. Тем не менее, электрофизиологические взаимодействия клеток‚ тканей и органов играют существенную роль в координации функционал

Ауксины
Одни из первых экспериментов по регуляции роста у растений были выполнены Чарльзом Дарвином и его сыном Фрэнсисом и изложены в работе «Сила движения у растений»‚ опубликованной в 1881 г. Дарвины си

Цитокинины
Вещества, необходимые для индукции деления растительных клеток, получили название цитокининов. Впервые в чистом виде фактор клеточного деления был выделен из автоклавированного препарата ДНК спермы

Гиббереллины
Японский исследователь Е.Куросава в 1926 г. установил, что культуральная жидкость фитопатогенного гриба Gibberella fujikuroi содержит химическое вещество, способствующее сильному вытягиванию стебле

Абсцизины
В 1961 г. В.Лью и Х.Карнс из сухих зрелых коробочек хлопчатника выделили в кристаллическом виде вещество, ускоряющее опадение листьев, и назвали его абсцизином (от англ. abscission - отделение, опа

Брассиностероиды
Впервые в пыльце рапса и ольхи были обнаружены вещества, обладающие регулирующей рост активностью и названные брассинами. В 1979 г. было выделено активное начало (брассинолид) и определено его хими

Термодинамические основы водного обмена растений
Введение в физиологию растений понятий термодинамики дало возможность математически описать и объяснить причины, вызывающие как водообмен клеток, так и транспорт воды в системе почва - растение - а

Поглощение и передвижение воды
Источником воды для растений является почва. Количество доступной для растения воды определяется ее состоянием в почве. Формы почвенной влаги: 1. Гравитационная вода – заполняет п

Транспирация
В основе расходования воды растительным организмом лежит физический процесс испарения – переход воды из жидкого состояния в парообразное‚ происходящий в результате соприкосновения органов растения

Физиология устьичных движений
Степень раскрытия устьиц зависит от интенсивности света, оводненности тканей листа, концентрации СО2 в межклетниках, температуры воздуха и других факторов. В зависимости от фактора, запу

Пути снижения интенсивности транспирации
Перспективным способом снижения уровня транспирации является применение антитранспирантов. По механизму действия их можно разделить на две группы: вещества‚ которые вызывают закрывание устьиц; веще

История фотосинтеза
В старые времена врач обя­зан был знать ботанику, ведь многие лекарственные средст­ва готовились из растений. Неудивительно, что лекари не­редко выращивали растения, проводили с ними различные опыт

Лист как орган фотосинтеза
В процессе эволюции растений сформировался специализированный орган фотосинтеза – лист. Приспособление его к фотосинтезу шло в двух направлениях: возможно более полное поглощение и запасание лучист

Хлоропласты и фотосинтетические пигменты
Лист растения - орган, обеспечивающий условия для проте­кания фотосинтетического процесса. Функционально же фото­синтез приурочен к специализированным органеллам - хлоропластам. Хлоропласты высших

Хлорофиллы
В настоящее время известно несколько различных форм хлорофилла, которые обозначают латинскими буквами. Хлоропласты высших растений содержат хлорофилл а и хлорофилл b. Они были идентифицированы русс

Каротиноиды
Каротиноиды - жирорастворимые пигменты желтого, оран­жевого и красного цветов. Они входят в состав хлоропластов и хромопластов незеленых частей растений (цветков, плодов, кор­неплодов). В зеленых л

Организация и функционирование пигментных систем
Пигменты хлоропластов объединены в функциональные ком­плексы - пигментные системы, в которых реакционный центр - хлорофилл а, осуществляющий фотосенсибилизацию, связан процессами переноса энергии с

Циклическое и нециклическое фотосинтетическое фосфорилирование
Фотосинтетическое фосфорилирование, т. е. образование АТФ в хлоропластах в ходе реакций, активируемых светом, может осуществляться циклическим и нециклическим путями. Циклическое фотофосфо

Темновая фаза фотосинтеза
Продукты световой фазы фотосинтеза АТФ и НАДФ. Н2 ис­пользуются в темновой фазе для восстановления СО2 до уровня углеводов. Реакции восстановления происходят насто

С4-путь фотосинтеза
Путь усвоения СО2, установленный М. Кальвиным, является основным. Но существует большая группа растений, включаю­щая более 500 видов покрытосеменных, у которых первичными продуктами фикс

САМ-метаболизм
Цикл Хетча и Слэка обнаружен также у растений-суккулентов (из родов Crassula, Bryophyllum и др.). Но если у С4-растений кооперация достигнута за счет пространственного разделения двух ци

Фотодыхание
Фотодыхание - это индуцированное светом поглощение кис­лорода и выделение СО2, которое наблюдается только в расти­тельных клетках, содержащих хлоропласты. Химизм этого про­цесса значител

Сапротрофы
В настоящее время грибы относят к самостоятельному цар­ству, однако многие стороны физиологии грибов близки к фи­зиологии растений. По-видимому, сходные механизмы лежат и в основе их гетеротрофного

Насекомоядные растения
В настоящее время известно свыше 400 видов покрытосе­менных растений, которые ловят мелких насекомых и другие ор­ганизмы, переваривают свою добычу и используют продукты ее разложения как дополнител

Гликолиз
Гликолиз - это процесс генерации энергии в клетке, происхо­дящий без поглощения О2 и выделения СО2. Поэтому его ско­рость трудно измерить. Основной функцией гликолиза наряду с

Электрон-транспортная цепь
В рассмотренных ре­акциях цикла Кребса и при гликолизе молекулярный кислород не участвует. Потребность в кислороде возникает при окислении восстановленных переносчиков НАДН2 и ФАДН2

Окислительное фосфорилирование
Главной особенностью внут­ренней мембраны митохондрии является присутствие в ней бел­ков - переносчиков электронов. Эта мембрана непроницаема для ионов водорода, поэтому перенос последних через мем

Пентозофосфатное расщепление глюкозы
Пентозофосфатный цикл‚ или гексозомонофосфатный шунт‚ часто называют апотомическим окислением‚ в отличие от гликолитического цикла‚ называемого дихотомическим (распад гексозы на две триозы). Особен

Жиры и белки как дыхательный субстрат
Запасные жиры расходуются на дыхание проростков‚ развивающихся из семян‚ богатых жирами. Использование жиров начинается с их гидролитического расщепления липазой на глицерин и жирные кислоты‚ что п

Элементы‚ необходимые для растительного организма
Растения способны поглощать из окружающей среды практически все элементы периодической системы Д.И. Менделеева. Причем многие рассеянные в земной коре элементы накапливаются в растениях в значитель

Признаки голодания растений
Во многих случаях при недостатке элементов минерального питания у растений появляются характерные симптомы. В ряде случаев эти признаки голодания могут помочь установить функции данного элемента, а

Антагонизм ионов
Для нормальной жизнедеятельности как растительных, так и животных организмов в окружающей их среде должно быть определенное соотношение различных катионов. Чистые растворы солей одного какого-либо

Поглощение минеральных веществ
Корневая система растений поглощает из почвы как воду, так и питательные вещества. Оба эти процесса взаимосвязаны, но осуществляются на основе разных механизмов. Многочисленные исследования показал

Ионный транспорт в растении
В зависимости от уровня организации процесса различают три типа транспорта веществ в растении: внутриклеточный, ближний (внутри органа) и дальний (между органами). Внутриклеточный

Радиальное перемещение ионов в корне
Путем обменных процессов и диффузии ионы поступают в клеточные стенки ризодермы, а затем через коровую паренхиму направляются к проводящим пучкам. Вплоть до внутреннего слоя коры эндодермы возможно

Восходящий транспорт ионов в растении
Восходящий ток ионов осуществляется преимущественно по сосудам ксилемы, которые лишены живого содержимого и являются составной частью апопласта растения. Механизм ксилемного транспорта - массовый т

Поглощение ионов клетками листа
На долю проводящей системы приходится около 1/4 объема ткани листа. Суммарная длина разветвлений проводящих пучков в 1 см листовой пластинки достигает 1 м. Такая насыщенность тканей листа проводяще

Отток ионов из листьев
Почти все элементы, за исключением кальция и бора, могут оттекать из листьев, достигших зрелости и начинающих стареть. Среди катионов во флоэмных экссудатах доминирующее место принадлежит калию, на

Азотное питание растений
Основными усвояемыми формами азота для высших растений являются ионы аммония и нитрата. Наиболее полно вопрос об использовании растениями нитратного и аммиачного азота разработан академиком Д. Н. П

Ассимиляция нитратного азота
Азот входит в состав органических соединений только в восстановленной форме. Поэтому включение нитратов в обмен веществ начинается с их восстановления, которое может осуществляться и в корнях, и в

Ассимиляция аммиака
Аммиак, образовавшийся при восстановлении нитратов или молекулярного азота, а также поступивший в растение при аммонийном питании, далее усваивается в результате восстановительного аминирования кет

Накопление нитратов в растениях
Темпы поглощения нитратного азота часто могут превышать скорость его метаболизации. Связано это с тем, что многовековая эволюция растений шла в условиях недостатка азота и вырабатывались системы не

Клеточные основы роста и развития
Основой роста тканей, органов и всего растения являются образование и рост клеток меристематической ткани. Различают апикальную, латеральную и интеркалярную (вставочную) меристемы. Апикальная мерис

Закон большого периода роста
Скорость роста (линейного, массы) в онтогенезе клетки, ткани, любого органа и растения в целом непостоянна и может быть выражена сигмовидной кривой (рис. 26). Впервые эта закономерность роста была

Гормональная регуляция роста и развития растений
Многокомпонентная гормональная система участвует в управлении ростовыми и формообразовательными процессами растений, в реализации генетической программы роста и развития. В онтогенезе в отдельных ч

Влияние фитогормонов на рост и морфогенез растений
Прорастание семян. В набухающем семени центром образования или высвобождения гиббереллинов, цитокининов и ауксинов из связанного (конъюгированного) состояния является зародыш. Из з

Использование фитогормонов и физиологически активных веществ
Изучение роли отдельных групп фитогормонов в регуляции роста и развития растений определило возможность использования этих соединений, их синтетических аналогов и других физиологически активных вещ

Физиология покоя семян
Покой семян относится к завершающей фазе эмбрионального периода онтогенеза. Основным биологическим процессом, наблюдаемым при органическом покое семян, является их физиологическое дозревание‚ вслед

Процессы, протекающие при прорастании семян
При прорастании семян выделяют следующие фазы. Поглощение воды - сухие семена, находящиеся в состоянии покоя, поглощают воду из воздуха или какого-либо субстрата до наступления критической

Покой растений
Рост растений не является непрерывным процессом. У большинства растений время от времени наступают периоды резкого замедления или даже почти полной приостановки ростовых процессов – периоды покоя.

Физиология старения растений
Этап старения (старости и отмирания) - это период от полного прекращения плодоношения до естественной смерти растения. Старение - это период закономерного ослабления процессов жизнедеятельности, из

Влияние микроорганизмов на рост растений
Многие почвенные микроорганизмы обладают способностью стимулировать рост растений. Полезные бактерии могут оказывать свое влияние непосредственно‚ поставляя растениям фиксированный азот‚ хелатирова

Движения растений
Растения в отличие от животных прикреплены к месту своего обитания и не могут перемещаться. Однако и для них характерно движение. Движение растений - это изменение положения органов растений в прос

Фототропизмы
Среди факторов, вызывающих проявление тропизмов, свет был первым, на действие которого человек обратил внимание. В древних литературных источниках были описаны изменения положения органов растений

Геотропизмы
Наряду со светом на растения оказывает влияние сила тяжести, определяющая положение растений в пространстве. Присущую всем растениям способность воспринимать земное притяжение и реагировать на него

Холодостойкость растений
Устойчивость растений к низким температурам подразделяют на холодостойкость и морозоустойчивость. Под холодостойкостью понимают способность растений переносить положительные температуры несколько в

Морозоустойчивость растений
Морозоустойчивость - способность растений переносить температуру ниже 0оС, низкие отрицательные температуры. Морозоустойчивые растения способны предотвращать или уменьшать действие низки

Зимостойкость растений
Непосредственное действие мороза на клетки - не единственная опасность, угрожающая многолетним травянистым и древесным культурам, озимым растениям в течение зимы. Помимо прямого действия мороза рас

Влияние на растения избытка влаги в почве
Постоянное или временное переувлажнение характерно для многих районов земного шара. Оно нередко наблюдается также при орошении, особенно проводимом методом затопления. Избыток воды в почве может бы

Засухоустойчивость растений
Обычным явлением для многих регионов России и государств СНГ стали засухи. Засуха - это длительный бездождливый период, сопровождаемый снижением относительной влажности воздуха, влажности почвы и п

Влияние на растения недостатка влаги
Недостаток воды в тканях растений возникает в результате превышения ее расхода на транспирацию перед поступлением из почвы. Это часто наблюдается в жаркую солнечную погоду к середине дня. При этом

Физиологические особенности засухоустойчивости
Способность растений переносить недостаточное влагообеспечение является комплексным свойством. Она определяется возможностью растений отсрочить опасное уменьшение оводненности протоплазмы (избегани

Жароустойчивость растений
Жароустойчивость (жаровыносливость) - способность растений переносить действие высоких температур, перегрев. Это генетически обусловленный признак. По жароустойчивости выделяют две группы

Солеустойчивость растений
За последние 50 лет уровень Мирового океана поднялся на 10 см. Эта тенденция, по предсказаниям ученых, будет продолжаться и дальше. Следствием этого является возрастающий дефицит пресной воды, а до

Основные термины и понятия
Вектор – самореплицирующаяся молекула ДНК (например‚ бактериальная плазмида)‚ используемая в генной инженерии для переноса генов. vir-гены

Из Agrobacterium tumefaciens
Почвенная бактерия Agrobacterium tumefaciens - фитопатоген, который в процессе своего жизненного цикла трансформирует клетки растений. Эта трансформация приводит к образованию корончатого галла - о

Векторные системы на основе Тi-плазмид
Самый простой способ использования природной способности Тi-плазмид к генетической трансформации растений предполагает встраивание интересующей исследователя нуклеотидной последовательности в Т-ДНК

Физические методы переноса генов в растительные клетки
Системы переноса генов с помощью Agrobacterium tumefaciens эффективно работают только в случае некоторых видов растений. В частности, однодольные растения, включая основные зерновые культуры (рис,

Бомбардировка микрочастицами
Бомбардировка микрочастицами, или биолистика, - наиболее многообещающий метод введения ДНК в растительные клетки. Золотые или вольфрамовые сферические частицы диаметром 0,4-1,2 мкм покрывают ДНК, о

Вирусам и гербицидам
Растения, устойчивые к насекомым-вредителям Если бы хлебные злаки можно было изменять методами генной инженерии так, чтобы они продуцировали функциональные инсектициды, то мы получили бы к

Воздействиям и старению
В отличие от большинства животных, растения физически не могут защитить себя от неблагоприятных воздействий со стороны окружающей среды: высокой освещенности, ультрафиолетового облучения, высоких т

Изменение окраски цветков
Цветоводы все время стараются создавать растения, цветки которых имеют более привлекательный внешний вид и лучше сохраняются после того, как их срежут. С помощью традиционных методов скрещивания за

Изменение пищевой ценности растений
За многие годы агрономы и селекционеры достигли больших успехов в улучшении качества и повышении урожайности самых разных сельскохозяйственных культур. Однако традиционные методы выведения новых со

Растения как биореакторы
Растения дают большое количество биомассы, а выращивание их не составляет труда, поэтому разумно было попытаться создать трансгенные растения, способные синтезировать коммерчески ценные белки и хим

Читатели часто обращаются в редакцию с вопросом: меняется цвет листьев растений — что делать? Мы решили опередить подобные вопросы и опубликовать симптомы нехватки или переизбытка питательных элементов у растений. Сверив изменения листьев с «наглядным пособием», можно самим определить проблемы и начать действовать. Для простоты восприятия симптомы показаны на одинаковых листьях.

Применение удобрений напрямую связано с состоянием растений. Если у них здоровый вид, они плодоносят и не проявляют признаков минерального голодания, то подкормку на время можно отложить. Но если вы заметили, что листья начинают менять окраску, растения резко замедляют свой рост, перестают цвести, значит, необходимо принимать меры — вносить удобрения.

При недостатке азота новые побеги на растении почти не образуются, а размеры листьев уменьшаются. При отсутствии азота в старых листьях разрушается хлорофилл, и как следствие — они принимают бледно-зеленую окраску, затем желтеют и отмирают.

Ухудшается так же формирование и развитие цветков, и налив плодов.

Что делать? Растения подкармливают аммиачной селитрой (20-30 г/м2) или навозной жижей (до 1 кг/м2). Для быстрого эффекта можно сделать некорневую подкормку (опрыскивание) раствором мочевины (30 г на 10 л воды).

Однако увлекаться азотными удобрениями тоже не стоит. Избыточное азотное питание, особенно во второй половине вегетации, задерживает формирование репродуктивных органов растений; они образуют большую зеленую массу. Сильно ухудшается качество урожая: в ягодах, фруктах и овощах снижаются концентрации сахаров, содержание крахмала, накапливаются нитраты. При явном переизбытке азота в почве листья на растениях приобретают темно-зеленую окраску, появляется большое количество молодых побегов, стебли у травянистых культур толще обычного.

Что делать? Остается только «отпаивать» растения, вымывая азот из почвы обильными поливами.

Фосфор необходим в ранние периоды жизни растений и при формировании урожая. Растение способно использовать этот элемент питания повторно — из старых листьев он может перемещаться к зонам роста, молодым побегам и листьям. Поэтому внешние признаки его недостатка будут проявляться в первую очередь на старых листьях. Они начнут приобретать характерный красно-фиолетовый или голубоватый оттенок, иногда темно-зеленую окраску. Цветение и созревание плодов у растений затягивается, рано наступает листопад. Замедляется рост побегов и корней, листья мельчают, снижается зимостойкость. Симптомы фосфорного голодания растений наиболее часто наблюдаются на кислых почвах, в которые мало вносили органики.

Что делать? Нужно опрыскать раствором суперфосфата (50 г на 10 л воды). Суперфосфат — это плохо растворимое удобрение, поэтому гранулы надо замочить на сутки, периодически помешивая. Процедить через 2 слоя марли, и получившимся настоем опрыскать растения. Через 2 недели желательно подкормить растение комплексным минеральным удобрением (1 ст. ложка на 10 л воды, расходуя раствор на 1 м2 посадок).

При дефиците калия на растениях появляются следующие симптомы: края и кончики листьев буреют, они приобретают как бы обожженный вид, на листовой пластинке возникают мелкие ржавые пятна. Клетки растут неравномерно, поэтому появляется гофрированность листьев, они приобретают куполообразную форму. Растение становится низкорослым с короткими междоузлиями, побеги вырастают тонкими. Особенно чувствительны к недостатку калия такие овощные культуры, как картофель, корнеплоды, капуста, кукуруза.

Что делать? Растения подкармливают хлористым калием (10 г/м2) или золой (до 100 г/м2). Для некорневых подкормок разводят 50 г калийной соли в 10 л воды.

Не навреди

Последнюю подкорму азотом проводят в последнюю декаду июля и не позднее первой недели августа. Иначе молодые побеги деревьев и кустарников не успеют вызреть, есть угроза вымерзания зимой.

А картофель и корнеплоды будут плохо храниться. Огурцы и томаты при острой нехватке азота можно подкармливать и позднее.

Что бывает, когда они недоедают

У растений потребность в микроэлементах значительно меньше, чем в минеральных и органических питательных веществах. Однако не стоит их недооценивать — в жизни растений они играют далеко не последнюю роль. При недостатке железа, марганца, магния растения, конечно, не умирают, но здоровые плоды дать им не под силу. Для большей наглядности симптомы приводим на одинаковых листьях.

Микроэлементы растения получают из почвы. Но земли, доставшиеся садоводам, как правило, бедны, поэтому для полноценного роста и развития посадок требуются своевременные подкормки.

Есть важный момент — в отличие от основных элементов питания (азот, фосфор, калий), растения усваивают микроэлементы лишь в том случае, если в почве они находятся в подвижном состоянии. Другими словами — в доступных для растений формах. В противном случае, даже если проведена подкормка, посадки могут страдать от дефицита того или иного микроэлемента.

Подвижность микроэлементов зависит от почвенной среды и, в первую очередь, показателя pH. Например, в кислых почвах (когда pH меньше 5,5) в доступных для растений формах находятся цинк, марганец, железо. А в нейтральных и щелочных они, напротив, малоподвижны и переходят в недоступные для растений соединения.

Часто в результате неправильной агротехники и внесения избыточных доз фосфорных удобрений грядки на садовых участках бывают «зафосфачены». В почве накапливается избыток фосфатов, которые образуют труднорастворимые соединения с цинком и железом. При этом снижается доступность этих микроэлементов для растений.

Симптомы нехватки микроэлементов

Недостаток железа и марганца проявляется на молодых листьях и точках роста. Эти микроэлементы не способны перемещаться из одной части растения в другие, поэтому при их дефиците в почве молодые побеги и листья не получают питание в нужном количестве.

При недостатке железа жилки листа теряют зеленую окраску, побеги покрываются бурыми пятнами или погибают.

При недостатке марганца жилки остаются зелеными, листья становятся пятнистыми, появляются участки отмершей ткани.

При дефиците магния в первую очередь страдает корневая система растений, на листьях жилки остаются зелеными, а другие части светлеют. Возможен ранний листопад, который начинается с нижней части растения. Иногда недостаток магния приводит к появлению рисунка на листьях, похожего на мозаичную болезнь.

Симптомы недостатка цинка проявляются сначала на старых листьях. На них сильно выражена крапчатость, появляются уголки отмершей ткани. Для плодовых деревьев характерным симптомом становится мельчание листьев и укорачивание междоузлий.

Что делать?

Органические удобрения хорошего качества (навоз, перегной, птичий помет, компост) содержат нужное количество микроэлементов. Если в почву своевременно вносят достаточное количество органики, то, как правило, дополнительного внесения микроэлементов не потребуется.

При острой нехватке микроэлементов растениям нужно помочь некорневыми подкормками (опрыскиванием). В продаже можно найти отдельные микроэлементы в виде простых химических солей. Но, как уже говорилось, они доступны растениям лишь на кислых и слабокислых почвах. На нейтральных и щелочных почвах следует применять микроэлементы в хелатной форме.

Для некорневых подкормок лучше использовать растворы (2 г на 10 л воды) сернокислого железа, сернокислого цинка, сернокислого марганца.

Для восполнения магния хорошие результаты дает опрыскивание растений раствором сульфатом магния (10 г на 10 л воды).

Меняется цвет листьев растений – что делать? , 1.0 out of 5 based on 1 rating

Когда дни становятся короче, а солнце уже не так щедро делится с землей своим теплом, наступает одно из самых красивых времён года - осень. Она, словно загадочная волшебница, меняет мир вокруг и наполняет его сочными и необычными красками. Заметнее всего эти чудеса происходят с растениями и кустарниками. Они одни из первых откликаются на перемены погоды и наступление осени. Впереди у них целых три месяца, чтобы подготовиться к зиме и расстаться со своими главными украшениями - листьями. Однако, сначала, деревья непременно порадуют всех вокруг переливами цвета и безумством красок, а опавшая листва бережно укроет своим покрывалом землю и защитит ее самых мелких жителей от сильных морозов.

Осенние изменения с деревьями и кустарниками, причины этих явлений

Осенью происходят одни из самых главных перемен в жизни деревьев и кустарников: изменение цвета листвы и листопад. Каждое из этих явлений помогает подготовиться им к зиме и пережить столь суровое время года.

Для лиственных деревьев и кустарников одной из главных проблем в зимнее время года является недостаток влаги, поэтому осенью все полезные вещества начинают накапливаться в корнях и сердцевине, а листья опадают. Листопад помогает не только увеличить запасы влаги, но и сэкономить их. Дело в том, что листья очень сильно испаряют жидкость, что очень расточительно зимой. Хвойные деревья в свою очередь могут позволить себе покрасоваться иголками и в холодное время года, так как испарение жидкости с них происходит очень медленно.

Еще одной причиной листопада является большой риск для веток быть сломанными под напором снежной шапки. Если бы пушистый снег ложился не только на сами ветки, но и на их листья, они не выдержали такой тяжелой ноши.

Кроме того, в листьях со временем накапливается много вредных веществ, избавиться от которых получается только при листопаде.

Одной из недавно раскрытых загадок является тот факт, что лиственные деревья, помещенные в теплую среду, а, значит, не нуждающиеся в подготовке к холодам, также сбрасывают листья. Это говорит о том, что листопад связан не столько со сменой времен года и подготовкой к зиме, сколько является важной частью жизненного цикла деревьев и кустарников.

Почему осенью листья меняют цвет?

С наступлением осени деревья и кустарники решаются сменить изумрудный цвет своих листьев на более яркие и необычные цвета. При этом, у каждого дерева свой набор пигментов-«красок». Эти изменения происходят из-за того, что в листьях содержится особое вещество, хлорофилл, который превращает свет в питательные вещества и придает листве зеленый цвет. Когда дерево или кустарник начинают запасать влагу, и она уже не поступает к изумрудным листьям, а солнечный день становится значительно короче, хлорофилл начинает распадаться на другие пигменты, которые и придают осеннему миру багряные и золотистые тона.

Яркость осенних красок зависит от погодных условий. Если на улице стоит солнечная и относительно теплая погода, то осенние листья будут яркими и пестрыми, а если часто идет дождь, то коричневыми или тускло-желтыми.

Как осенью меняют цвет листья разных деревьев и кустарников

Буйству красок и их неземной красотой осень обязана тому, что у листвы всех деревьев разные сочетания цветов и оттенков. Наиболее часто встречается багряный цвет листьев. Багряным окрасом могут похвастаться клен и осина. Эти деревья очень красивы осенью.

Листья березы становятся светло-жёлтыми, а дуба, ясеня, липы, граба и орешника - буровато-желтыми.

Орешник (лещина)

Тополь быстро сбрасывает свою листву, она лишь начинает набирать желтизну и вот уже опала.

Кустарники также радуют разнообразием и яркостью красок. Их листва становится желтой, фиолетовой или красной. Виноградные листья (виноград - кустарник) приобретают неповторимый темно-пурпурный цвет.

Пунцово-красным оттенком выделяются на общем фоне листья барбариса и вишни.

Барбарис

От желтого до красного цвета могут быть осенью листья рябины.

Алеют вместе с ягодами листья калины.

Бересклет одевается в фиолетовые одежды.

Красный и пурпурные оттенки листвы определяет пигмент антоцианин . Интересным является тот факт, что он полностью отсутствует в составе листьев и может образовываться только под воздействием холода. Это означает, что чем морознее дни, тем более багряным будет окружающий лиственный мир.

Однако, есть растения, которые не только осенью, но и зимой сохраняют свою листву и остаются зелеными. Благодаря таким деревьям и кустарникам оживает зимний пейзаж, а многие животные и птицы находят в них свой дом. В северных краях к таким деревьям относят деревья: сосну, ель и кедр. Южнее количество таких растений еще больше. Среди них выделяют деревья и и кустарники: можжевельник, мирт, тую, барбарис, кипарис, самшит, горный лавр, абелию.

Вечнозеленое дерево - ель

Некоторые лиственные кустарники тоже не расстаются со своей изумрудной одежкой. К ним относят клюкву и бруснику. На Дальнем Востоке есть интересное растение багульник, листья которого не меняют осенью окраску, а сворачиваются осенью в трубочку и отпадают.

Почему листья опадают, а хвоинки нет?

Листья играют большую роль в жизни деревьев и кустарников. Они помогают создавать и запасать питательные вещества, а также накапливают минеральные компоненты. Однако, зимой, когда возникает острая нехватка света, а, значит, питания, листья только увеличивают расход полезных компонентов и вызывают чрезмерное испарение влаги.

Хвойные растения, которые чаще всего растут на территориях с довольно суровым климатом очень нуждаются в питании, поэтому не сбрасывают свои иголки, выполняющие роль листьев. Хвоя прекрасно приспособлена к холодам. В иголках сосредоточено очень много пигмента хлорофилла, который и преобразует из света питательные вещества. Кроме того, они имеют небольшую площадь, что значительно уменьшает испарение с их поверхности столь необходимой зимой влаги. От холодов иголки защищены особым восковым покрытием, а благодаря веществу, в них содержащемуся, они не промерзают даже в сильные морозы. Воздух, который захватывают иголки создает вокруг дерева своеобразный изоляционный слой.

Единственным хвойным растением, которое расстается на зиму со своими иголками является лиственница. Она появилась в глубокой древности, когда лето было очень жарким, а зимы невероятно морозными. Эта особенность климата привела к тому, что лиственница стала сбрасывать свои иголки и не нужно было защищать их от холодов.

Листопад, как сезонное явление, наступает у каждого растения в свой определенный срок. Это зависит от породы дерева, его возраста и особенностей климата.

Раньше всего расстаются со своими листьями тополь и дуб, затем наступает время рябины. Яблоня одной из последних сбрасывает листья, и, даже, в зимнее время, на ней могут еще оставаться несколько листочков.

Листопад у тополя начинается в конце сентября, а к середине октября он полностью заканчивается. Молодые деревья дольше сохраняют свою листву и позже желтеют.

Дуб начинает терять свои листья в начале сентября и через месяц полностью лишается своей кроны. Если заморозки начинаются раньше, то листопад происходит значительно быстрее. Вместе с листьями дуба начинают осыпаться и желуди.

Рябина начинает свой листопад в начале октября и до 1 ноября продолжает радовать своими розовыми листьями. Считается, что после того, как рябина расстается с последними листьями, начинаются промозглые зябкие дни.

Листья на яблоне начинают золотиться к 20 сентября. К концу этого месяца начинается листопад. Последние листья осыпаются с яблони во второй половине октября.

Вечнозеленые растения и кустарники не теряют свою листву даже с наступлением холодов, как это делают обычные лиственные породы. Постоянный лиственный покров позволяет им пережить любые погодные условия и сохранить максимальный запас питательных веществ. Конечно, такие деревья и кустарники обновляют свои листья, но процесс этот происходит постепенно и практически незаметно.

Вечнозеленые растения не сбрасывают сразу все свои листья по нескольким причинам. Во-первых, тогда им не приходится тратить большие запасы питательных веществ и энергии для выращивания молодых листьев весной, а во-вторых, их постоянное наличие обеспечивает беспрерывное питание ствола и корней. Чаще всего вечнозеленые деревья и кустарники произрастают на территориях с мягким и теплым климатом, где и зимой стоит теплая погода, однако, встречаются они и в суровых климатических условиях. Наиболее распространены такие растения во влажных тропических лесах.

Такие вечнозеленые растения, как кипарисы, ели, эвкалипты, некоторые виды вечнозеленых дубов, родендрон можно найти на широкой территории от суровой Сибири до лесов Южной Америки.

Одним из наиболее красивых вечнозеленых растений является голубая веерная пальма, которая произрастает в Калифорнии.

Необычным видом и высотой более 3 метров отличается средиземноморский кустарник олеандр.

Еще одним вечнозеленым кустарником является гардения жасминовая. Ее родиной является Китай.

Осень - одно из самых красивых и ярких времен года. Всполохи пурпурных и золотистых листьев, готовящихся разноцветным ковром покрыть землю, хвойные деревья, пронизывающие своими тонкими иголками первый снег и вечнозеленые растения, всегда радующие глаз, делают осенний мир еще более восхитительным и незабываемым. Природа постепенно готовится к зиме и даже не подозревает, насколько завораживают взгляд эти приготовления.