Что такое биогаз и как его получают. Как получить биогаз из навоза: технология и устройство установки по производству. Способы стабилизации давления

Что такое биогаз и как его получают. Как получить биогаз из навоза: технология и устройство установки по производству. Способы стабилизации давления

10.1. Общие сведения о получении биогаза

В последнее десятилетие большое внимание уделено развитию в нашей стране использованию нетрадиционых и возобносляемых источников энергии в связи с дефицитом собственных топливно-энергетических ресурсов. Одним из нетрадиционных и возобновляемых источников энергии может служить энергия получаемая из биомассы. Именно полученый в хозяйствах республики биогаз и выработка энергии из него позволит экономить природные н сжиженные газы.

Все источники биомассы можно разделить на три основные группы:

    к первой группе относятся специально выращенные для энергетических целей наземные растения. Наибольшее значение имеют лесоводческие энергетические хозяйства для выращивания различных пород деревьев: быстрорастущая порода ивы (разработка белорусских ученых), эбеновое дерево, эвкалипт, пальма, гибридный тополь и др. Одним из перспективных энергетических культур является является земляная груша (топинамбур), сладкое сорго, сахарный тростник.

    Ко второй группе источников биомассыотносится различные органические остатки и отходы:

а) биологические отходы животных (навоз крупного рогатого скота, помёт домашней птицы и др.);

б) остатки от сбора урожая сельскохозяйственных культур и побочные продукты их переработки, такие как солома ржи и пшеницы, кочерыжка кукурузного початка, стебель хлопка, скорлупа земляного ореха, отходы картофеля, рисовая шелуха и солома, лузга семечек, костра льна и др.;

в) отходы лесозаготовок, лесопиления и деревообработки: кора, опилки, древесные щепки, стружки;

г) промышленные сточные воды (в частности, текстильных, молочных, а так же других предприятий по переработке пищевых продуктов);

д) городские отходы (твёрдые и сточные воды).

    Третья группа – это водные растения, в том числе морские водоросли, среди которых гигантские ламинарии (бурые водоросли), водяной гиацинт. Океан рассматривается как основной поставщик крупных морских бурых водорослей и водорослей обитающих на дне (бентические растения), а так же водорослей плавающих в стоячей воде. Кроме того анализируется возможность использования биомассы эстуарий солёных и пресноводных болот.

Энергетический потенциал водных растений довольно высок. Так, например свежие морские водоросли 29,2 т.н.э/га/год; водяной гиацинт -53,6 т.н.э/га/год, а сахарный тростник 40,0 т.н.э/га/год /21/, /26/.

В зависимости от влажности и степени биоразлагаемости биомасса перерабатывается термохимическими методами (прямое сжигание, газификация, пиролиз, ожижение) или биологическиеми (анаэробная переработка, этапольная ферментация). С их помощью, из биомассы можно получить различные конечные энергетические продукты, включая тепло, пар, низко- и высококалорийные газы и различные жидкие топлива. Одним из самых широко используемых методов переработки биомассы остаётся прямое сжигание с целью получения тепла или электроэнергии. Наиболее перспективным процессом превращения биомассы являются термохимическая газификация, ферментация и анаэробная переработка, в результате которых получают синтез-газ (метан). Для Беларуси перспективным может стать развитие биоэнергетики на основе обновляемого энергетического ресурса, такого как древесина. Сюда можно отнести и выращивание быстрорастущих сортов древесины. В Беларуси уже ведутся исследования по выращиванию энергетических плантаций канадской ивы и сахалинского горца Вейриха. Эти деревья способны обновляться в течении 25 лет, а обрубку и сбор топлива проводят через 3 года, причём один гектар плантации способен дать в среднем 20 м3 древесины. Так же изучаются возможности выращивания и целесообразности выращивания в наших климатических условиях сахалинского бамбука и Сильвии широколистной. Разрабатывается и получает широкое применение технология сжигания древесных гранул.

10.2. Получении биогаза при анаэробном сбраживании

Одним из способов получения биогаза является способ анаэробного (без доступа кислорода), сбраживании или ферментации (перепревании) органических веществ биологической массы самого различного происхождения при температуре 30÷370 °С, а так же при постоянном перемешивании загруженного сырья, переодической загрузке исходного сырья в ёмкость для ферментации и выгрузке сброженного материала /17, с.357-364/. Емкость, в которой происходит процесс сбраживания, называется метантенком или реактором . При соблюдении всех оговоренных выше условий под действием имеющихся в биомассе бактерий органические вещества разлагаются и образуют смесь газов, которая называется биогаз .Для получения биогаза могут быть использованы отходы обработки сельскохозяйственных культур - силос, солома, пищевые и другие отходы ферм, навоз, птичий помёт, сточных вод и тому подобное сырьё содержащее органические вещества. Важно, чтобы среда сырья была нейтральной, без веществ которые мешают действию бактеррий, например мыла, стиральных порошков, антибиотиков / 20/.

Биогаз содержит 50÷80 % метана (СН 4), 50÷20 % диоксида углерода (СО 2), 0÷3 % сероводорода (Н 2 S), а так же примесей: водорода, аммиака и окислов азота. Биогаз не имеет неприятного запаха. Теплота сгорания 1 м 3 биогаза достигает 21÷29 МДж, что примерно эквивалентно сжиганию 0,6 л бензина, 0,85 л спирта, 1,7 кг дров или использованию 1,4÷1,6 кВт*ч электроэнергии. Эффективность сбраживания зависит от соблюдения анаэробных условий, температурного режима и продолжительности сбраживания. Сбраживание навоза возможно при температуре 30÷35 °С (мезоф и льный реж и м брожен и я ) и 50÷60°С и выше (термоф и льный реж и м ).

Продолжительность сбраживания навоза зависят от вида биомассы. Для навоза крупного рогатого скота и куриного помета продолжительность составляет 20 суток (сут), свиного навоза - 10 сут. Активность микробной реакции в значительной мере определяется соотношением углерода и азота. Наиболее благоприятные условия при соотношении С/N == 10:16.

С 1 м 3 реактора выход биогаза достигает 2÷3 м 3 биогаза, от птичьего помёта - 6 м 3 /21/. В сутки от одного животного можно получить следующее количество биогаза: крупный рогатый скот (массой 500÷600 кг) - < 1,5 м 3 ; свиньи (массой 80÷100 кг) - 0,2 м 3 ; куры или кролики - 0,015 м 3 .

Данные об удельном выходе биогаза от различных сельскохозяйственных отходов приведены в таблице 15.1 /17, с.357/.

Энергию, которую получают от сжигания биогаза можно использовать для различных нужд сельского хозяйства. С помощъю приводимого газовым двигателем внутреннего сгорания электрического генератора можно получать электроэнергию. Недостатком является то, что часть выработанной энергии необходимо исполльзовать на работу самой биогазовой установки (в некоторых установка до 50 % вырабатываемой энергии).

Биогаз можно сжигать как топливо в горелках отопительных установок, водогрейных котлов, газовых плит и использовать в холодильных установках абсорбционного типа, в автотракторных двигателях, в агрегатах инфракрасного излучения. Карбюраторный двигатель легко переводнтся на газ, в том числе на биогаз. Для этого карбюратор заменяют на смеситель. Не представляет трудностей перевод дизельных двигателей на работу с газом. При переводе с дизельного топлива на природный газ мощность двигателя снижается на 20 %, с природного на биогаз - на 10 %. Расход биогаза составляет в среднем 0,65 м 3 /кВт ч. Давление газа перед двигателем должно быть не менее 0,4 кПа /17, с.358/.

В животноводстве для подогрева воды потребность в биогазе на одно животное в год составляет: дойной коровы - 21-30 м 3 , свиньн - 1,4-4,9 м 3 . Большие значения этих цифр относятся к малым фермам, меньшие - к средним.

Таблица 15.1.

Выход биогаэа из органических отходов

Потребность в биогазе для отопления доильных помещений равна: при числе коров 40 - 164/327 м 3 /год; при числе коров 60 - 212/410 м 3 /год; при числе коров 80 - 262/530 м 3 /год. В числителе указаны данные при температуре наружного воздуха до - 10 °С, в знаменателе - при температуре наружного воздуха t н ниже - 10°С.

Для отопления птичников при наружной температуре - 10°С и внутренней 18°С требуется примерно 1,2 м 3 /ч на 1000 голов.

Остаток (метатановую бражку) можно использовать в качестве удобрения.

Б и огазовые установк и (БГУ) в зависимости от особенностей технологической схемы бывают трех типов: непрерывные, периодические и аккумулятивные /17, с.360/.

При непрерывной (проточной) схеме (рис. 15.1) свежий субстрат загружают в камеру сбраживания непрерывно или через определенные промежутки времени (от 2 до 10 раз в сутки), удаляя такое же коли-чество сброженной массы. Эта система позволяет получить максимальное количество биогаза, но требует больше материальных расходов.

При периодической (циклической) схеме (рис. 15.2) имеются две камеры сбраживания, которые загружают по очереди. В данном случае полезный объем камер используется менее эффективно, чем при непрерывной. Кроме того, нужны значительные запасы навоза или другого субстрата для их заполнения.

При аккумулятивной схеме хранилище для навоза служит одновременно камерой сбраживания и хранения перебродившего навоза до его выгрузки (рис. 15.3).

Введение

Получение биогаза метатенков и сельскохозяйственных биогазовых установок

Системы хранения биогаза

Состав биогаза

Подготовка биогаза к использованию

Основные направления и мировые лидеры использования биогаза

Заключение

Список использованной литературы

Введение

В мировой практике газоснабжения накоплен достаточный опыт использования возобновляемых источников энергии, в том числе энергии биомассы. Наиболее перспективным газообразным топливом является биогаз, интерес к использованию которого в последние годы не только не убывает, но и продолжает возрастать. Под биогазами подразумеваются метансодержащие газы, которые образуются при анаэробном разложении органической биомассы. В зависимости от источника получения биогазы подразделяются на три основных вида:

Газ метантенков, получаемый на городских очистных канализационных сооружениях (БГ КОС);

Биогаз, получаемый в биогазовых установках (БГУ) при сбраживании отходов сельскохозяйственных производств (БГ СХП);

Газ свалок, получаемый на полигонах отходов, содержащих органические компоненты (БГ ТБО).

В своей работе я рассмотрела технологии получения этих газов, их состав, методы подготовки биогаза к использованию, а именно методы очистки от балластных веществ. Биогаз обладает широким спектром использования, который я коротко рассмотрела в этой работе.


Получение биогаза метатенков и сельскохозяйственных биогазовых установок

По техническому исполнению биогазовые установки подразделяются на три системы: аккумулятивную, периодическую, непрерывную.

В аккумулятивных системах предусматривается сбраживание в реакторах, которые служат одновременно и местом хранения сброженного навоза (субстрата) до его выгрузки. Исходный субстрат постоянно подается в резервуар до его заполнения. Выгрузка сброженного субстрата производится один-два раза в год в период внесения удобрений в почву. При этом часть сброженного осадка специально оставляется в реакторе и служит затравочным материалом для последующего цикла сбраживания. Объем хранилища, совмещенного с биореактором, рассчитывается на полный объем удаляемого с комплекса навоза в межпосевной период. Такие системы требуют больших объемов хранилищ и применяются очень редко.

Периодическая система производства биогаза предполагает разовую загрузку исходного субстрата в реактор, подачу туда же затравочного материала и выгрузку сброженного продукта. Такая система характеризуется довольно большой трудоемкостью, очень неравномерным выходом газа и требует наличия не менее двух реакторов, резервуара для накопления исходного навоза и хранения сброженного субстрата.

При непрерывной схеме исходный субстрат непрерывно или через определенные промежутки времени (1-10 раз в сутки) загружается в камеру сбраживания, откуда одновременно удаляется такое же количество сброженного осадка. Для интенсификации процесса сбраживания в биореактор могут вноситься различные добавки, увеличивающие не только скорость реакции, но и выход и качество газа. Современные биогазовые установки рассчитываются, как правило, на непрерывный процесс и изготавливаются из стали, бетона, пластмасс, кирпича. Для теплоизоляции применяются стекловолокно, стекловата, ячеистый пластик.

По суточной производительности существующие биогазовые системы и установки можно разделить на 3 типа:

малые - до 50 м 3 /сут;

средние – до 500 м 3 /сут;

крупные – до 30 тыс. м 3 /сут.

Метатенковые и сельскохозяйственные биогазовые установки не имеют принципиальных отличий, за исключением используемого субстрата. Технологическая схема биогазовой сельскохозяйственной установки представлена на рис. 1.

Согласно этой схеме навоз из животноводческого помещения (1) поступает в на копительную емкость (2), далее фекальным насосом (3) его загружают в метантенк - емкость для анаэробного сбраживания (4). Биогаз, образующийся в процессе брожения, поступает в газгольдер (5) и далее к потребителю Для нагрева навоза до температуры брожения и поддержания теплового режима в метантенке применяют теплообменник (6), через который протекает горячая вода, нагреваемая в котле (7) Сброженный навоз выгружают в навозохранилище (8).

Рис.1. Обобщенная схема производства биогаза (сельскохозяйственная биогазовая

Биореактор имеет тепловую изоляцию, которая должна стабильно поддерживать температурный режим сбраживания и поддаваться быстрой замене при выходе из строя. Обогрев биореактора осуществляется посредством размещения по периметру стенок теплообменников в виде спирали из труб, по которым циркулирует горячая вода с начальной температурой 60-70 °С. Такая низкая температура теплоносителя принята во избежание гибели метанообразующих микроорганизмов и налипания частичек субстрата на теплообменную поверхность, что может привести к ухудшению теплообмена.В биореакторе также имеются устройства для постоянного перемешивания навоза. Поступление навоза в метантенк регулируется так, чтобы процесс сбраживания протекал равномерно.

Во время сбраживания в навозе развивается микрофлора, которая последовательно разрушает органические вещества до кислот, а последние под действием синтрофных и метанообразующих бактерий превращаются в газообразные продукты - метан и углекислоту.

В метантенках обеспечиваются все необходимые параметры процесса-температура(33-37º С) , концентрация органических веществ, кислотность (6,8-7,4) и др. Рост клеток метанового биоценоза также определяется соотношением C:N, и оптимальное его значение составляет 30:1. Некоторые вещества, содержащиеся в исходном субстрате, могут ингибировать метановое сбраживание (табл. 1). Например, куриный помет часто ингибирует метановое сбраживание избытком NH3.

Таблица 1

Ингибиторы метанового сбраживания

Биогаз, получаемый на полигонах ТБО

Процесс неуправляемого газообразования на полигонах бытовых и других отходов, содержащих большую долю органических компонентов, можно рассматривать как процесс получения метансодержащего газа в аккумулятивной системе, длительность процесса до полного разложения органической части здесь гораздо больше, чем в метатенках.

В отечественной практике системы утилизации биогаза на полигонах ТБО пока не получили широкого распространения, поэтому при дальнейшем рассмотрении конструктивных особенностей систем сбора и транспорта биогаза будет учитываться зарубежный опыт. Принципиальная схема одной из таких систем на полигоне ТБО представлена на рис. 2. Система состоит из двух основных частей: газосборной сети, находящейся под разрежением, и распределительной сети потребителей биогаза, находящейся под избыточным низким или (реже) средним давлением.



Рис. 2. Устройство системы дегазации полигонах ТБО


Ниже приводятся определения важнейших элементов системы сбора газа на полигоне, представленные на рис. 2, и требования к отдельным элементам системы.

Газовые коллекторы - это трубопроводы, проложенные в толще отходов, в которых создается разрежение. Как правило, они выполняются либо вертикально в виде газовых скважин, либо горизонтально в виде перфорированных трубопроводов, однако на практике применяются и другие формы (резервуары, гравийные или щебеночные камеры и др.).

Под сборными газопроводами понимаются газопроводы, находящиеся под разрежением и ведущие к части сборных коллекторов. Для компенсации просадок они имеют гибкое присоединение к газовому коллектору, в узле присоединения располагаются контрольно-измерительные приборы (для измерения давления) и штуцеры для отбора проб газа.

В газосборном пункте объединяются сборные газопроводы. Газосборный пункт может быть выполнен в виде трубы, резервуара и т. п. и размещается в низшей точке с целью обеспечения сбора и отвода выпадающего конденсата. В газосборном пункте размещаются контрольно-измерительные приборы и устройства автоматики.

Система отведения конденсата - это устройство на газопроводе для сбора и отвода конденсата в низшей точке системы трубопроводов. В зоне разрежения конденсат отводится через сифоны, в области избыточного давления - посредством регулируемых конденсатоотводчиков. Конденсат можно также отводить как в зоне разрежения, так и в зоне избыточного давления с помощью охлаждающего устройства.

Всасывающим трубопроводом называют прямой участок трубопровода перед нагнетательным устройством, здесь также предусматриваются контрольно-измерительные приборы и устройства автоматики.

Нагнетательные устройства (вентилятор, воздуходувка и т. п.) служат для создания разрежения, необходимого для транспорта газа из тела захоронения или для создания избыточного давления при транспортировании газа к месту использования (к факельной установке, к системе утилизации и т. п.).

Компрессорная установка служит для повышения избыточного давления газа.

В машинном отделении размещаются нагнетательные устройства. Традиционными конструкциями являются контейнеры, металлические кожухи или небольшие строения (гаражи, блочные конструкции и т. д.). На крупных установках газонагнетательные устройства располагаются в машинном зале, иногда они могут размещаться на открытых площадках под навесом.

Постоянные повышения цен на газ , структурные кризисы и рыночные спекуляции на фоне политической нестабильности послужили толчком для развития технологий получения газа искусcтвенно, через использование отходов разных производств. За два десятилетия бурного развития биогазовая отрасль стала мощной, и инженеры разработали технически надежные решения производства достаточного количества энергии из биоотходов децентрализовано. Сегодня в Германии функционирует более 7 000 биогазовых установок мощностью от 500 кВт/час до 2 МВт/час. Биогаз производится на биогазовых установках везде, где доступны биоотходы или энергетически ценное растительное сырье.

Что такое биогаз?

Биогаз – обобщенное название горючей газовой смеси, получаемой при естественном разложении веществ органического происхождения в результате анаэробного микробиологического процесса (метанового брожения). Для того, чтобы процесс разложения не длился тысячи лет, а исчислялся днями, для жизнедеятельности нескольких видов бактерий создают наиболее благоприятные условия. Температуру жизни и «еду» для бактерий готовят тщательно. Смесь, которую загружают в биореактор называется биосубстрат . Биосубстрат чаще всего состоит из смеси навоза и измельченного кукурузного силоса (на фото слева).

Сегодняшние биогазовые установки все больше проектируются с целью утилизации бытовых органических отходов, поэтому состав биосубстрата подбирают для БГУ индивидуально.

Процесс выделения биогаза можно наблюдать через небольшое окошко в ферментере.

Процесс химических преобразований внутри биогазовой установки отражает такая схема:

Маленькие пузырьки на поверхности плавно двигающегося биосубстрата, это и есть биогаз.

Биогаз – это всегда смесь метана с другими побочными газами. В состав биогаза входят:

В зависимости от вида органических компонентов для биосубстрата, который использует БГУ, состав биогаза может отличаться, процентное содержание метана может быть или выше или ниже.

Так как биогаз на 2/3 состоит из метана – горючего газа, составляющего основу природного газа, его энергетическая ценность (удельная теплота сгорания) составляет 60-70% энергетической ценности природного газа, или порядка 7000 ккал на м 3 . Эквивалентом для 1м 3 биогаза может быть 700 гр мазута и 1,7 кг дров.

Для сравнения:

  • Одна голова КРС дает в год 300-500 м 3 биогаза в год
  • Один га луговой травы – 6000-8000 м 3 биогаза в год
  • Один га кормовой свеклы – 8000-12000 м 3 биогаза в год

Зачем использовать биогаз?

В условиях высокой стоимости энергоносителей, а с другой стороны возрастающего количества органических отходов от сельского хозяйства и от человеческой жизнедеятельности (это все возобновляемые источники энергии), б иогаз выступает важным продуктом - как альтернативная энергетика. Самая важная функция Биогазовой установки - это гарантированная энергетическая безопасность как отдельного производства (свинофермы, теплицы, зернохранилища), так и в масштабах небольших населенных пунктов – ключевой объект жизнеобеспечения, который обеспечит полное децентрализованное снабжение электро- и теплоэнергией всех жителей. В сегодняшних кризисных условиях развития Украины этот фактор приобретает особую силу.

Какая польза от биогазовой установки?

  1. Тепло. При охлаждении двигателя когенератора, в котором сжигают биогаз, образуется тепло в виде горячей воды. Горячую воду используют для обогрева помещений с людьми и животными, для обогрева теплиц, бассейнов.
  2. Электричество . Независимый и гарантированный источник. Никаких веерных отключений электричества. Сжигание газа в двигателе внутреннего сгорания приводит в действие вал электрогенератора, образуется электроэнергия. Из одного м3 биогаза можно выработать около 2 кВт электроэнергии.
  3. Природный газ . Современные биогазовые установки все чаще оснащают модулями для очистки биогаза. В результате нескольких технологических операций содержание метана увеличивается до 90 %, побочные газы удаляются. Биогаз превратился в стандартный природный газ, и его можно использовать в бытовых целях.
  4. Органические удобрения . Биосубстрат, после удаления из него газа и обработки бактериями, представляет собой экологически чистые, жидкие удобрения лишенные нитратов, семян сорняков, болезнетворной микрофлоры.
  5. Решение экологических проблем . Утилизация навоза. Биогазовые установки устанавливаются на очистных сооружениях сточных вод городов, в сельской местности на фермах, птицефабриках, мясокомбинатах для обеспечения энергетической независимости, производства электроэнергии и тепловой энергии из отходов производства.

Производство биогаза позволяет предотвратить выбросы метана в атмосферу, снизить применение химичесих удобрений, ликвидирует опасность загрязнения грунтовых вод.

Самым важным для экономики Украины является то, что биогаз является побочным продуктом при переработке органических отходов, сырье для производства биогаза в основном уже есть на предприятии, его не надо покупать.

На чем работает биогазовая установка? - На отходах!

В качестве сырья используются: сельскохозяйственные отходы (навоз, помет животноводческих ферм и комплексов, отходы растениеводства (силос)), отходы боен, отходы пищевой промышленности (барда, жом), отходы городских канализаций. Затраты на производство биогаза будут связаны только с эксплуатационными расходами на оборудование и на сервисное обслуживание. Прямая выгода будет состоять из сэкономленных средств на тепло, электроэнергию и из экономии затрат на минеральные удобрения за счет получения высококачественных органических удобрений.

При отсутствии таких установок, утилизация отходов – большая головная боль предприятий, большие финансовые и трудовые затраты на вывоз и захоронение отходов, а ведь использование отходов и внедренная биогазовая установка полностью решает эту проблему, плюс обеспечивает предприятие и близлежащие населенные пункты электричеством, газом и теплом.

От одного животного (КРС) можно получить около 400 - 500 м3 биогаза. При применении энергетических растений можно получить от 6.000 и до 12.000 (кукурузный силос/кормовая свекла) м3 биогаза с одного гектара. С 1 м3 биогаза, в зависимости от содержания метана, можно выработать от 1,5 до 2,2 kW электричества.

Небольшие биогазовые установки имеет смысл применять там, где есть возможность получить сырье и полное использованиие полученных продуктов. Успешно применяются установки там где необходимо тепло, пар, электроэнергия или холод. Обычно достаточное количество сырья для биогазовых установок имеется у станций очистки сточных вод, на свалках мусора, на свинофермах, птицефабриках, в коровниках - это все возобновляемая энергия. Применение эта энергия находит в школах, медицинских учреждениях, бассейнах, коммунальных теплоэлектростанциях, в гостиницах и общежитиях, на заводах и фабриках.

Метановое "брожение", или биометаногенез, - процесс превращения биомассы в энергию европейцами был открыт только в 1776 г. Вольтой, который установил наличие метана в болотном газе. Биогаз, получающийся в ходе этого процесса, представляет собой смесь из метана 65%, углекислого газа 30%, 1% сероводорода и незначительных количеств азота, кислорода, водорода и закиси углерода. (А. Сассон)
Первые сведения о практическом использовании биогаза, европейцами полученного из сельскохозяйственных отходов, относятся к 1814 году, когда Дейви собрал биогаз при исследовании агрохимических свойств навоза крупного рогатого скота. Для сбора отходов, начиная с 1881 года, стали использоваться закрытые емкости, которые, после небольшой модификации, получили название "септик". Еще в 1895 году уличные фонари в одном из районов города Эксетер (Англия) снабжались газом, который получали в результате брожения сточных вод. Начиная с 1897 года, очистка вод в этом городе проводилась в таких емкостях, из которых биогаз собирали и использовали для обогрева и освещения.
В настоящее время известны биореакторы различных конструкций, где предусмотрены прочность материала, из которого создана установка, устройства для перемешивания массы и теплопереноса, подготовка и подогрев загружаемого суб-страта, забор и аккумулирование биогаза и отвода осадков.
Карагандинский ЭкоМузей с 1 декабря 2000 г. реализует проект "BIOGAS", по внедрению в Карагандинской области биогазовых технологий. Данный проект является первым опытом использования биогазовых технологий в Центральном Казахстане. За время реализации проекта Экологический Музей накопил достаточно много опыта и информации о строительстве, запуске и эксплуатации биогазовых установок, причем данный опыт привязан к местным условиям Центрального Казахстана, где ранее не использовались подобные технологии.
Сотрудники Карагандинского Экологического Музея разработали и претворили в жизнь несколько технологий строительства биогазовых установок, приспособленных для крестьян и фермеров Казахстана.

Зачем нам нужен биогаз?
Биогаз - это продукт обмена веществ метановых бактерий, который образует-ся в результате разложения органической массы.
Биогаз является высококачественным и полноценным носителем энергии и может многосторонне использоваться как топливо в домашнем хозяйстве и в среднем и мелком предпринимательстве для приготовления пищи, производства электро-энергии, отопления жилых и производственных помещений, кипячения, сушки и ох-лаждения. Теплота сгорания в среднем равна 6,0 кВт/ч/куб.м
В какой степени биогаз может заменить традиционное топливо, зависит от объема и эффективности установки. Карагандинский опыт использования БГУ пока-зывает, что установка объемом 8 куб. м. и работающая на свином навозе может пол-ностью заменить газ пропан, используемый для приготовления пищи в семье из пяти человек. БГУ объемом 60 куб.м может использоваться для отопления жилого поме-щения площадью 200 кв.м и производственного помещения размером 400 кв.м.
При эксплуатации биогазовой установки отработанное сырье является также полезным продуктом, способным улучшить экономические и экологические условия крестьянского или фермерского хозяйства. Биошлам - это высококачественное удоб-рение, сырье для производства биогумуса, субстрата для выращивания грибов. А при соответствующих параметрах установки и контроле над соблюдением температур-ного режима работы БГУ - кормовая добавка животным, которым необходим для нормального развития животный белок (свиньи, куры и пр.) и прикорм для рыбы в рыбных хозяйствах.
Подводя итоги, использование биогазовых технологий может принести следующие выгоды:

Экономия времени и труда
- Уменьшается время на приготовление пищи
- Уменьшается время на мытье посуды
- Уменьшается время на уборку на кухне
- Высвобождается время, затрачиваемое на обслуживание печи (очистка печи от золы, уборка золы, поднос топлива, загрузка печи, розжиг, наблюдение за печью и добавление топлива)
- Высвобождается время, затрачиваемое ранее на сбор, транспортировку, сушку и складирование кизяка или поиски, транспортировку и перегрузку угля, и поиски, покупку, рубку, сушку и складирование дров
- Уменьшается время на прополку сорняков (их семена погибают в накопителе)

Экономия денег
- Экономятся деньги, затрачиваемые на печное топливо или электричество
- Продлевается срок службы кухонной посуды
- Экономятся деньги на покупку удобрений и гербицидов

Возможность получения дополнительных денег
- Вы можете продать излишки газа соседям или обменять на что-нибудь
- Вы можете продать компост
- При использовании компоста повышается урожайность ваших с/х культур и Вы можете выручить больше денег от их продажи.

Экологические выгоды
- Уменьшение выброса в атмосферу метана (парниковый газ)
- Уменьшение количества сжигаемого угля, дров или топлива для выработки электроэнергии, и как следствие уменьшение образуемого углеки-слого газа (парниковый газ) и вредных продуктов сгорания
- Уменьшение сброса в окружающую среду загрязненных вод
- Очищение загрязненных вод от органических веществ и микроорганизмов
- Сохранение леса от вырубки
- Уменьшение необходимости в химических удобрениях
- Очищение воздуха в доме и селе от продуктов сгорания угля
- Уменьшение загрязнения воздуха азотистыми соединениями, дезодорирование воздуха

Экономия места
- Высвобождается место, ранее занимаемое углем или кизяком

Удобства
- Очищается воздух в доме и на кухне
- Уменьшается объем неиспользуемого мусора (мусора становится меньше)
- Используются все органические отходы, включая отходы туалета
- В огороде и на поле становится меньше сорняков, их семена гибнут в накопителе
- Уменьшается запах от навоза во дворе (бионакопитель анаэроб-ный, то есть не имеет контакта с воздухом)
- Уменьшается количество мух

Сохранение здоровья
- Уменьшается риск заболеть болезнями, связанными с загрязненным воздухом - респираторными и глазными заболеваниями
- Улучшается эпидемиологическая обстановка из-за гибели в накопителе микроорганизмов и уменьшения мест размножения насекомых
Для того, чтобы разобраться, какие выгоды и прибыли может принести экс-плуатация биогазовой установки в вашем конкретном фермерском или крестьянском хозяйстве, вы должны понять:
1. сколько затрат потребуется для строительства БГУ,
2. как можно эти затраты сократить
3. и за какое время эти затраты окупятся.
Ответы на поставленные вопросы можно получить, составив подробный план строительства установки, ее эксплуатации и реализации полученных продуктов.

КАКИМИ БЫВАЮТ БИОГАЗОВЫЕ УСТАНОВКИ
Для большей ясности приведем несколько определений, часто используемых в этой главе терминов:

Биореактор - резервуар, (сосуд, емкость) в котором созданы условия для жизнедеятельности метангенерирующих бактерий. Как синоним термина "реактор" в некоторой литературе используются термины "реактор", "метантенк", "метантанк" "септик" - все они имеют один смысл

Система отопления - система парового (водяного) отопления позволяющая поддерживать рабочую температуру в биореакторе, особенно в зимний период.

Перемешивающее устройство - устройство расположенное внутри биореактора и позволяющее перемешивать перерабатываемую массу для ускорения полной переработки.
Загрузочное и выгрузное отверстия - проемы в биореакторе, через которые загружается сырье и выгружается переработанная биомасса.
Все биогазовые установки делятся по рабочему циклу на два типа: непрерывно работающие и работающие периодически.
Непрерывно работающие биогазовые установки постоянно подгружаются сырьем, и одновременно переработанная биомасса отгружается. Таким образом, работа установки не прерывается.
Биогазовые установки, работающие периодически или циклично, загружаются полностью до рабочего уровня и герметически закрываются, в течение некоторого промежутка времени установка активно выделяет биогаз, после полной переработки биомассы установка разгружается и рабочий цикл повторяется.
Форма реактора и применяемые строительные материалы. В ходе реализации проекта были разработаны биогазовые установки, способные работать в условиях Центрального Казахстана.
Цилиндрические биогазовые установки располагаются горизонтально, если установка непрерывно работающего типа, и вертикально при циклично работающей установке.
Эллипсоидные биогазовые установки имеют форму, близкую к яйцеобразной. С точки зрения процесса биометаногенеза такая форма биореактора наиболее оптимальна - в ней происходят процессы естественного перемешивания, а также отвода шлама и стока осадков. Строятся биогазовые установки подобной формы из бетона или возводятся из кирпича.
Оборудование, используемое для производства биогаза. Для повышения вы-хода биогаза из установки применяется дополнительное оборудование:
1. Фекальные насосы применяются для откачки переработанной биомассы и значительно облегчают обслуживание биогазовой установки.
2. Циркуляционные насосы применяются в системе отопления установки и позволяют поддерживать рабочую температуру с меньшими энергозатратами.
3. Перемешивающие устройства применяются для перемешивания перерабатываемой биомассы внутри реактора, что повышает производитель-ность установки и уменьшает время, необходимое для переработки биомассы.
4. Обратный клапан, устанавливаемый в систему газоотвода, не-обходим для предотвращения попадания воздуха в биореактор.
5. Газовый котел отопления, подключается к системе отопления установок и работает на выделяемом биогазе и потребляет до 5% от всего ко-личества газа.

Производительность БГУ
Как уже было отмечено ранее, продуктами производства БГУ являются биогаз и биошлам.
Производительность биогаза - выход биогаза (м3) с единицы субстрата (м3) за период ферментации.
Производительность биогаза зависит следующих параметров:
- объема реактора установки; чем больше объем установки, тем больше выход газа
- температуры в реакторе, при которой происходит брожение (фермента-ция); метанобразующие бактерии в безкислородных условиях могут выделять газ в температурном интервале от 0С- до 70С. Однако, наиболее интенсивно биогаз выделяется в 2-х температурных интервалах. Необходимо отметить, что при различной температуре "работают" различные виды метаногенерирующих бактерий. Первый интервал (мезофильный, т.к работают мезофильные бактерии) от 25С - 38С - оптимальная температура 37С. Второй интервал (термофильный, т.к. работают термофильные бактерии) от 45С - 60С - оптимальная температура 56С. Каждый из этих интервалов обладает рядом преимуществ и недостатков, подробно с ними можно ознакомиться ниже.

МЕЗОФИЛЬНЫЙ ТИП ФЕРМЕНТАЦИИ

Плюсы
- Производительность газа практически не снижается при отклонении температуры на 1-2oС от оптимума;
-Требуется меньше энергетических затрат на поддержание температуры.

Минусы
- Выделение газа менее интенсивно;
- Требуется больше времени до полного разложения субстрата -25 дней;
- Биошлам полученый при данном режиме не является полностью стерильным.

ТЕРМОФИЛЬНЫЙ ТИП ФЕРМЕНТАЦИИ

Плюсы
- Выделение газа интенсивнее;
- Требуется меньше времени до полного разложения субстрата - 12 дней;
- Биошлам полученый при данном режиме является полностью стерильным и поэтому его можно применять в качестве кормовых добавок животным.

Минусы
- Производительность газа значительно снижается при отклонении температуры на 1-2oС от оптимума;
- Требуется больше энергетических затрат на поддержание температуры.
- от сырья. Сырьем для БГУ может быть навоз домашних животных, растительная масса и другие органические остатки. В зависимости от используемого субстрата, производительность биогаза варьирует. Примерные данные указаны в таблице №1

Таблица №1. Производительность биогаза в зависимости от используемого сырья за период ферментации (Archea 2000г, Германия).

Сырье (субстрат)

Биогаз (м3 на м3 субстрата)
Куринный помет 53,71
Конский навоз 40,60
Навоз КРС 32,40
Навоз КРС (свежий) 76,69
Овечий навоз 162,00
Свиной навоз 25,52

Влажности загружаемого субстрата; Процесс брожения может происходить при влажности от 50% до 95%, однако учеными доказано для животноводческих отходов процесс метанообразования оптимально протекает при влажности сырья от 90-95 .
- времени пребывания субстрата в реакторе; Оптимальное время пребывания субстрата в реакторе различается в зависимости от рабочей температуры и вида сбраживаемого сырья. При мезофильном типе ферментации -25- 30 дней, при термофильном - 10-15дней.

Эксплуатация биогазовых установок
1.Пуск установки осуществляется в несколько этапов.
Первоначально производится загрузка установки сырьем, очень важным аспектом этого действия является влажность загружаемого субстрата - она должна составлять в зимний период 85%, летом до 92%. Установка загружается до гидрозатвора. Для ускорения начала процесса метаногенеза в загруженный субстрат заливается закваска (биошлам или субстрат из работающей установки). За неимением закваски в субстрат вносят свежий навоз КРС.

Периодичность загрузки субстрата определяется опытным путем для каждой биогазовой установки, этот параметр зависит от многих показателей: температуры субстрата, вида животных производящих сырье, влажности субстрата, объема установки и пр. До оптимальной влажности сырье доводят перед загрузкой в установку. Субстрат разбавляют теплой водой (35-40 град.) тщательно размешивают, а потом заливают в загрузное отверстие установки. От влажности сырья зависит объем выходящего биогаза, время переработки сырья и степень его разложения. В летний период оптимальная влажность 92%, зимой оптимальной является 85% влажность.
3. Поддержание оптимальной температуры.
В условиях Центрального Казахстана необходимо подогревать работающий реактор. При строительстве внутри реактора монтируются трубчатые теплообменники, которые, в зависимости от конструкции установки, подводятся либо к паровому отоплению жилого дома (установки малого объема), либо к автономному отопительному котлу, работающему на биогазе. Для снижения теплопотерь, загружаемый субстрат разбавляют горячей (температура не выше 60оС) водой.
4. Перемешивание.
Перемешивание субстрата внутри реактора значительно повышает эффективность работы БГУ, так как препятствует образованию осадка и плавающей корки и обеспечивает перемещение массы в реакторе.
5. Аккумулирование биогаза.
Поскольку биогаз расходуется неравномерно, а установка вырабатывает его постоянно, то возникает вопрос об его аккумулировании. Собирать газ можно в резиновые камеры, используемые в колесах сельскохозяйственных машин.
6. Использование биогаза.
Биогаз используется для приготовления пищи, отопления жилых помещений, отопления производственных помещений (теплиц, птичников и др.).
7. Использование биошлама.
Биошлам используется как удобрение на полях хозяйства, при полной переработке субстрата в реакторе установки, биошлам можно использовать как добавку в корм свиньям и домашней птице. После несложной обработки (фильтрация и сушка) биошлама его можно реализовывать в коммерческих целях. Потенциальные покупатели удобрения из биошлама - садоводческие хозяйства, дачные кооперативы и пр.
8. Техника безопасности.
В состав биогаза входят сероводород (H2S), углекислый газ (CO2) и метан. Метан, входящий в состав биогаза, практически не ядовит. Он легче воздуха, легко воспламеняется и образует с воздухом (5-15% метана) или кислородом взрывчатую смесь. В случае утечки, при наличии вентиляции, газ улетучивается без каких либо последствий. Сероводород, если и представляет опасность для здоровья людей, то встречается в небольших количествах и легко обнаруживается по неприятному запаху. Поскольку сероводород тяжелее воздуха, необходимо обращать внимание на то, чтобы при утечках этот газ не смог накапливаться в углублениях. При высоких концентрациях он притупляет восприятие запаха, что затрудняет его обнаружение и может привести к смертельным отравлениям, но еще раз можно отметить, что доля сероводорода в биогазе очень мала и состовляет не более 1 %. Углекислый газ (CO2) входящий в состав биогаза, тоже может скапливаться в глубоких выемках, так как он тяжелее воздуха, при наличии неплотностей в установке вызывает опасность удушья.

Заключение
Если вас заинтересовала эта информация в нашей брошюре, и вы решились построить в вашем хозяйстве биогазовую установку, то хотелось бы вам дать еще несколько советов и рекомендаций.
Совет №1. Перед строительством установки хорошенько обдумайте вопрос об использовании биошлама. От этого зависит форма реактора и температурный режим. В случае использования биошлама как удобрения, снижается стоимость обслуживания и строительства. В случае использования биошлама как пищевых добавок для скота и птицы возрастает стоимость, но уменьшается время на окупаемость. Скот и птица, получающие такие добавки быстрее набирают вес, снижается падеж, за счет чего можно получить прибыль в домашнем (крестьянском или фермерском) хозяйстве.
Совет №2. Определившись с формой и объемом реактора, можно начинать составлять свою смету на строительство. Подведя черту "итого", не хватайтесь сразу за голову от высоких сумм. Стоимость установки можно значительно снизить, используя в некоторых случаях бросовый или "проверенный временем" строительный материал.
Совет №3. Подготовив список необходимых строительных материалов, можно что-то не найти в вашем городе или районе. Посоветуйтесь с нами, мы вам сможем подсказать, какой строительный материал можно использовать взамен не найденного.

Биогаз

Метантанк биогазовой установки

Биогаз - газ, получаемый водородным или метановым брожением биомассы . Метановое разложение биомассы происходит под воздействием трёх видов бактерий . В цепочке питания последующие бактерии питаются продуктами жизнедеятельности предыдущих. Первый вид - бактерии гидролизные, второй - кислотообразующие, третий - метанообразующие. В производстве биогаза участвуют не только бактерии класса метаногенов , а все три вида. Одной из разновидностей биогаза является биоводород, где конечным продуктом жизнедеятельности бактерий является не метан, а водород.

История

Человечество научилось использовать биогаз давно. В 1 тысячелетии до н. э. на территории современной Германии уже существовали примитивные биогазовые установки. Алеманам , населявшим заболоченные земли бассейна Эльбы, чудились Драконы в корягах на болоте. Они полагали, что горючий газ, скапливающийся в ямах на болотах - это дыхание Дракона. Чтобы задобрить Дракона, в болото бросали жертвоприношения и остатки пищи. Люди верили, что Дракон приходит ночью и его дыхание остаётся в ямах. Алеманы додумались шить из кожи тенты, накрывать ими болото, отводить газ по кожаным же трубам к своему жилищу и сжигать его для приготовления пищи. Оно и понятно, ведь сухие дрова найти было трудно, а болотный газ (биогаз) отлично решал эту проблему.

Состав и качество биогаза

Переработанный навоз, барда и другие отходы применяются в качестве удобрения в сельском хозяйстве. Это позволяет снизить применение химических удобрений, сокращается нагрузка на грунтовые воды .

Производство

Существуют промышленные и кустарные установки. Промышленные установки отличаются от кустарных наличием механизации, систем подогрева, гомогенизации, автоматики. Наиболее распространённый промышленный метод - анаэробное сбраживание в метантенках.

Хорошая биогазовая установка должна иметь необходимые части:

  • Емкость гомогенизации
  • Загрузчик твердого (жидкого)сырья
  • Реактор
  • Мешалки
  • Система смешивания воды и отопления
  • Газовая система
  • Насосная станция
  • Сепаратор
  • Приборы контроля
  • КИПиА с визуализацией
  • Система безопасности

Принцип работы установки

Биомасса (отходы или зеленая масса) периодически подаются с помощью насосной станции или загрузчика в реактор. Реактор представляет собой подогреваемый и утепленный резервуар, оборудованный миксерами. Стройматериалом для промышленного резервуара чаще всего служит железобетон или сталь с покрытием. В малых установках иногда используются композиционные материалы. В реакторе живут полезные бактерии, питающиеся биомассой. Продуктом жизнедеятельности бактерий является биогаз. Для поддержания жизни бактерий требуется подача корма, подогрев до 35-38 °С и периодическое перемешивание. Образующийся биогаз скапливается в хранилище (газгольдере), затем проходит систему очистки и подается к потребителям (котел или электрогенератор). Реактор работает без доступа воздуха, герметичен и неопасен.

Биогазовые установки могут устанавливаться как очистные сооружения на фермах, птицефабриках, спиртовых заводах, сахарных заводах, мясокомбинатах. Биогазовая установка может заменить ветеринарно-санитарный завод, т. е. падаль может утилизироваться в биогаз вместо производства мясо-костной муки .

Среди промышленно развитых стран ведущее место в производстве и использовании биогаза по относительным показателям принадлежит Дании - биогаз занимает до 18 % в её общем энергобалансе. По абсолютным показателям по количеству средних и крупных установок ведущее место занимает Германия - 8000 тыс. шт. В Западной Европе не менее половины всех птицеферм отапливаются биогазом.

Биогаз в России

Потенциальное производство в России биогаза – до 72 млрд м³ в год. Потенциально возможное производство из биогаза электроэнергии в год составляет 151 200 ГВтч, тепла – 169 344 ГВтч.

Развивающиеся страны

Автомобильный транспорт

Volvo и Scania производят автобусы с двигателями, работающими на биогазе. Такие автобусы активно используются в городах Швейцарии : Берн , Базель , Женева , Люцерн и Лозанна . По прогнозам Швейцарской Ассоциации Газовой Индустрии к году 10 % автотранспорта Швейцарии будет работать на биогазе.

Муниципалитет Осло в начале 2009 года перевёл на биогаз 80 городских автобусов. Стоимость биогаза составляет € 0,4 - €0,5 за литр в бензиновом эквиваленте. При успешном завершении испытаний на биогаз будут переведены 400 автобусов