Извещатель тепловой линейный термокабель. Линейный тепловой извещатель – термокабель Protectowire (США). Критерии выбора модели термокабеля для различных температурных диапазонов

Извещатель тепловой линейный термокабель. Линейный тепловой извещатель – термокабель Protectowire (США). Критерии выбора модели термокабеля для различных температурных диапазонов

Специалисты выделяют большое количество разновидностей кабельных изделий. Но в отдельный класс относят извещатель пожарный линейный тепловой, который используется в аппаратно-программных комплексах контроля состояния атомных электростанций. Чувствительный элемент в таком устройстве находится по всей длине кабеля, он может менять свои электрические параметры при изменении условий внешней среды. Чувствительный элементы так заметны, что их можно свободно фиксировать. По сравнению с остальными кабелями и датчиками такие устройства не унифицированы, поэтому для них нет единых стандартов.

На многих мероприятиях существует большое число проблем с пожарной безопасностью по причине их сложных конфигураций, условий работы, температуры и других затруднительных особенностей.

К примеру, при условии сильных электромагнитных проблем, задымленности на объекте, высокой радиации многие температурные и дымовые датчики и извещатели пламени не могут нормально функционировать и подавать сигнал о наличии аварии на производстве. Во многих случаях использование линейного пожарного теплового извещателя действительно оправдано, а в некоторых случаях им даже нет замены, к примеру, при использовании на ядерном реакторе.

Термокабели можно использовать почти повсеместно, но особой эффективности от можно добиться на кабельных трассах, коллекторах, шахтах лифтов, мусоропроводах, тоннелях, резервуарах с горючими и мазочными компонентами, тоннелях и транспортных станциях. С помощью большого температурного диапазона пожарные тепловые извещатели можно применять в морозильных камерах, холодильниках, элеваторах, ангарах и на некоторых производственных мероприятиях.

Так как термокабель можно использовать в зданиях с большими электромагнитными полями без ухудшения рабочих качеств, то дополнительно его можно применять и для контроля качества нагрева устройств (к примеру, генераторов, томографов и трансформаторов).

По причине особой гибкости и небольшого диаметра кабеля извещатель пожарный тепловой помогает выслеживать температуру в особо труднодоступных местах. В этом случае важно, чтобы кабель прокладывался по самой поверхности оборудований.

Работа прибора

Конструктивно термокабель включает в себя витую пару, которая создана из стального провода. Каждый провод вкручивается в витую пару и покрывается специальными теплочувствительными полимерами.

По причине этого в кабеле находится высокое напряжение, которое при проблемах с изоляцией приводит к короткому замыканию.

Принцип работы ИП теплового пожарного извещателя для пожарной сигнализации заключен в том, что при достижении определенного температурного режима чувствительность к нагреву изоляции нарушается, а провода под воздействием внутреннего напряжения соединяются, в результате чего и происходит замыкание. Чтобы термокабель активировался хватит того, чтобы перегрев произошел всего в одном участке. Общее сопротивление линии быстро меняется. Специальный контроллер отвечает за проводимость кабеля, определяет точный участок его возгорания, сравнивает с установками и перенаправляет сигнал тревоги на пуль противозащитного устройства.

Основные разновидности датчиков

Все тепловые пожарные извещатели по реакции сенсора можно разделить на максимальные, которые дают реакцию на установленную температуру, дифференциальные, которые начинают работать при ее определенном изменении от установленных параметров, а также максимально-дифференциальные датчики, которые дают реакцию сразу на два этих фактора. Все они бывают контактные, электронные, оптические, а также механические.

Механические датчики

Извещатель пожарный тепловой максимальный при контроле за состоянием устройства рассчитывает зависимость давления от температуры окружающей среды. В сенсором в устройстве находится специальная медная трубка с сжатым газом. Увеличение температуры указывает на изменения давления в трубке, что указывается на самом датчике. Измерительный блок изменяет поступающие показателя извещателя в температуру и при превышении установленных параметров отсылают сигнал тревоги в пожарную панель. Такие разновидности механических датчиков почти не применяются по причине трудоемкости и разработки более технологичных и современных датчиков.

Контактные устройства

Контактные датчики в линейных извещателях представляют с тобой витую пару стальных проводов, которые изготавливаются из полимеров чувствительных к температурному режиму. Число проводов может быть больше нескольких. Внешняя оболочка может изготовляться из разных материалов, это будет напрямую зависеть от области их использования.

В зоне возгорания и перегревания изоляция кабеля начинает плавиться, что провоцирует короткое замыкание. Модуль с хорошо разработанным интерфейсом помогает определить сопротивление линии и общее расстояние до места замыкания провода.

Электронный датчик

В отличие от контактных линейных извещателей, линейные электронные датчики не провоцирует короткое замыкание при работе устройства, они считывают все изменения сопротивления от температуры окружающей среды и переносят их к контрольно-измерительному устройству.

Чувствительный элемент включает в себя большое количество сенсоров, которые установлены в многожильный кабель, по которому вся информация переходит от каждого элемента линии. Приемный блок перерабатывает полученные сигналы и сравнивает их с установленными в нем параметрами тревоги. При выявлении критической ситуации устройство передает сигнал о тревоге на пожарную панель.

Оптический датчик

Особенности работы оптического датчика в тепловом пожарном линейном извещателе основаны на изменении оптической прозрачности сенсора, которая напрямую зависит от температуры окружающей среды. Для этого применяется оптоволоконный кабель. В тот момент когда свет от лазера падает на место возгорания либо перегрева, его часть сразу же отражается. Прибор обработки выявляет показатель мощность прямого и отраженного цвета, быстроту его изменения и выявления показатель температуры на том участке, где произошла неполадка.

В зависимости от типа используемого оптоволокна и установок модуля обработки, оборудование может выполнять множество функций теплового датчика.

Самые популярные устройства

К самым популярным и широко используемым термокабелям относят следующие модели:

  • Protectowire;
  • Thermocable;
  • "Спецприбор";
  • "Пожтехник";
  • "Этра-спецавтоматик".

Термокабеля от фирмы Protectowire продолжают поступать в продажу уже на протяжении 10 лет. Последние четыре года производители выпускают термокабель для пожарной сигнализации контактного типа.

Особенности устройств и их стоимость особо не отличаются, отличия заключены в сопротивлении кабеля всего 1 метр, максимальной длине, напряжении тока и общем диапазоне. В зависимости от целей использования устройства можно найти для себя более качественный и удобный кабель.

В последнее время часто выпускают модели термокабелей электронного типа. Они включают в себя кабель длиной до 24 сантиметров с установленным внутри оплетки температурным датчиком, в некоторых моделях дополнительно встроен датчик, который помогает определить поблизости угарный газ. В отличие от контактных линейные устройства функционируют точно так же, как и тепловые.

Особенности монтажа

Существует множество способом монтажа пожарного теплового линейного извещателя. К термокабелю, как правило, предъявляют такие же требования, как и к простому точечному тепловому датчику. Монтаж извещателя пожарной сигнализации проводится с помощью специального крепежа, который идет в комплекте при покупке устройства либо рекомендуется к покупке производителем термокабеля. Покупать специальный крепеж важно, так как это поможет избежать проблем с изоляцией кабеля и как следствие ложного замыкания. Если кабель включает в себя сразу несколько кусков, то применяют специальные клеммные соединители.

Такой кабель устанавливается под потолком либо на стены. В том месте, где с прокладкой термокабеля возникают некоторые проблемы, следует использовать специализированный трос-подвес.

При прокладке извещателя важно помнить про технологические характеристики помещения, к примеру, на складах важно учитывать функционирование разгрузочных и погрузочных устройств.

Монтаж кабеля важно проводить с натяжкой и при температуре в помещении не ниже - 10 градусов Цельсия, но совершать работу такое устройство будет при температуре от -40 до +125 градусов Цельсия. При установке извещателя безопасности на ровные потолки расстояние между соседними кабелями не должно превышать 10,6 метров.

Требования производителя

Помимо этого, существуют особые требования от производителя устройства. Чтобы обеспечить его нормальное функционирование, важно обязательно их соблюдать. Не следует допускать того, чтобы кабель прикасался к любым предметам, так как это не будет давать ему нормально реагировать на изменения температуры в окружающей среде. Предметы в непосредственной близости с извещателем могут играть роль радиатора, приводя к различным неполадкам в функционировании устройства.

От качественной установки пожарного теплового линейного извещателя на мероприятии будет напрямую зависеть его безопасность и работоспособность. Все технические средства с помощью встроенных в них датчиков помогают выявить источник возгорания и вовремя предотвратить пожар. Технические требования к таким устройствам продолжают возрастать. Появление новых детекторов, которые помогают выявить участки возгорания, способствует своевременному и точному обнаружению пожара.

Где используют устройства

Тепловые линейные пожарные извещатели принято использовать на следующих объектах:

  • отапливаемые, а также неотапливаемые помещения;
  • наружные объекты, включая линейно-протяженные;
  • мероприятия, которые отличаются большой протяженностью потолка, к примеру, производственные цеха, торговые комплексы, спортивные стадионы, театры, концертные помещения, коллекторы, шахты и тоннели, энергетические и транспортные помещения, включая морские, речные суда.

Датчик с высокой чувствительностью в устройстве разрешено устанавливать в непосредственном контакте с защитным устройством, в труднодоступных местах и применять в условиях с низкой либо высокой температурой, высокой влажностью, запыленностью, а также вибрацией.

Тепловой извещатель "Болид"

Линейный тепловой пожарный извещатель "Болид" представляет собой оптическую установку, в составе которой находится приемник и передатчик. Устройство можно монтировать в разных углах здания, в непосредственной близости к потолку, определяют значение расстояния (50-140 метров).

Современные разработки извещателей включают в свой состав систему самоконтроля, которая помогает усилить подаваемый сигнал во время запыления оптических устройств. Стоимость теплового извещателя Болид довольно высока (начинается от 4000 рублей), но вместе с этим в устройстве находится минимальное количество проводов, а также оно очень быстро монтируется.

Адресный пожарный извещатель "Болид". Такая разновидность датчика помогает получить и передать сигналы через радиоканал, общая дальность действия устройства доходит до 600 метров.

Пожарный тепловой линейный извещатель Термокабель GTSW 68 используется для контроля пороговой температуры и обнаружения источника возгорания для предотвращения пожара на объекте. Устройство регулирует температуру по всей длине и может функционировать совместно с модулями МИП.

Термокабель включает в себя кабель, который помогает определить источник перегрева на любом участке. В извещатель вмонтирован всего один датчик непрерывного действия, который используется в том случае, когда условия на предприятии не дают установить простой датчик, а при наличии риска взрывоопасности использование термокабеля считается наилучшим выходом.

Также особой популярностью на рынке пользуется пожарный тепловой линейный извещатель PHSC 155. Система включает в себя кабель, который помогает выявить источник тепла на всем его протяжении, она также оснащена специальным датчиком постоянного действия.

Извещатели пожарные тепловые линейные. Монтаж и примеры установки

ИЗВЕЩАТЕЛИ ПОЖАРНЫЕ ТЕПЛОВЫЕ ЛИНЕИНЫЕ МОНТАЖ И ПРИМЕРЫ УСТАНОВКИ

В предыдущем номере журнала «Алгоритм безопасности» (2013, № 3) был представлен материал о извещателях пожарных тепловых линейных, их назначении и принципах действия.

В этой статье мы расскажем об особенностях монтажа тепловых линейных из-вещателей, об использовании их на сложных объектах, представим несколько типовых решений по их установке.

Напомним на всякий случай, что такое линейный тепловой пожарный извеща-тель или термокабель. Это сигнальный кабель, который реагирует на изменение предельной температуры любого участка по всей его длине. Термокабель одновременно является и датчиком, и кабелем. Любая точка на линейном тепловом пожарном извещателе может рассматриваться как отдельный тепловой датчик. Правила установки термокабеля такие же, как для точечных тепловых пожарных извещателей с нормально разомкнутыми контактами.

МОНТАЖ ТЕПЛОВОГО ЛИНЕЙНОГО ПОЖАРНОГО ИЗВЕЩАТЕЛЯ

Все типы термокабеля монтируются с применением специального крепежа. Для сращивания отрезков кабеля используются клеммные соединители и обжимные устройства. Термокабель монтируется непрерывными участками без отводов и разветвлений (как змейка). Он может быть размещен на потолке защищаемого помещения или сооружения или на стенах. На участках, где затруднена установка, рекомендуется размещать термокабель на стальном тросе-носителе.

Перед началом монтажа термокабеля необходимо тщательно спланировать место его прокладки. Планирование выполняется на основе чертежей защищаемых или контролируемых зон с учетом данных по расположению и конфигурации кабелей в пространстве. Неправильная установка или крепление линейного теплового извещателя могут привести к его механическим повреждениям, например, в технологических зонах, складских помещениях, где используется погрузочная техника.

Размещение кабеля рекомендуется производить с возможностью его натяга. При этом устанавливаемый участок извещателя должен быть размотан. В то же время другая, неиспользуемая часть извещателя должна быть смотана. Это будет гарантией легкой и надежной установки. Установка термокабеля рекомендована при температурах от -10° C и выше. Тогда как эксплуатация возможна даже при экстремальных температурах от -40° C до +125° С.

Для обеспечения безопасности открытых помещений (навесы) термокабель рекомендуется устанавливать на расстоянии 500 мм (20 дюймов) от потолка. Срабатывание термокабеля может быть улучшено спусками по стене или стойкам (колоннам). Термокабель, установленный в непосредственной близости от опасной зоны, имеет дополнительное преимущество в быстроте срабатывания.

При этом сам извещатель не должен препятствовать проведению регламентных работ в защищаемой зоне. На ровных потолках расстояние между линиями извещателя (извещателей) не должно превышать 10,6 м/35 футов (сертифицировано стандартами UL). Согласно Международным стандартам FM расстояние должно быть 9,0 м/30 футов для TH68 и TH88 или 7,5 м/25 футов для TH105. Извещатель следует располагать на перечисленных расстояниях от стен, измеренных под прямым углом в пределах 18 дюймов (460 мм) от потолка.

Также при монтаже следует учитывать так называемую «мертвую зону». В большинстве случаев «мертвая зона» представляет собой треугольник со сторонами 10-20 см вдоль потолка и 10-20 см вниз по стене. В данной зоне не рекомендуется прокладывать термокабель, т.к. это значительно снижает защищенность объекта от возгорания.

Если линейный тепловой пожарный извещатель используется для запуска систем автоматического пожаротушения, к его прокладке могут быть предъявлены дополнительные требования в соответствии со спецификой защищаемого объекта.

КРЕПЕЖНЫЕ УСТРОЙСТВА

Для правильной и безотказной работы всей системы необходимо использовать только оригинальные крепежные комплектующие, рекомендованные производителем. Использование не оригинального крепежа или подручного материала может привести к повреждению термокабеля, что в свою очередь ведет к ложным срабатываниям и неисправности всей системы.

Каждый производитель термокабеля предлагает широкий спектр крепежных устройств. Приведем несколько наглядных примеров таких устройств:

КРЕПЕЖ ОБЩЕГО НАЗНАЧЕНИЯ

Т-образный крепеж позволяет быстро и легко закрепить термокабель в нужном месте. Конструкция крепежа предусматривает заданное расстояние между термокабелем и поверхностью, к которой он крепится, для отвода тепла. Данный крепеж удобен тем, что нет необходимости удалять его при замене или ремонте термокабеля (рис. 1).

На рисунке 2 представлен крепеж, в котором используется замок типа TwistLock. Крепеж можно использовать для крепления термокабеля в кабельных лотках, складских стеллажах, бетонных стенах или на крышах (рис. 2).

Кабельный хомут предназначен для крепления термокабеля в промышленных и коммерческих зданиях. Конструкция данного крепежа жестко фиксирует термокабель, обеспечивая отвод тепла и предотвращая его вибрацию (рис. 3).

Самоклеящаяся клипса. Удобна для использования при окружающей температуре от -40° С до +85° С. Имеется отверстие для винта. При помощи данного крепежа можно легко отсоединить и пере-закрепить термокабель (рис. 4).

Кабельный зажим (рис. 5) является наиболее универсальным типом крепежа и может использоваться для крепления извещателя к потолку или стене, а также во всех углах. Устойчив к ультрафиолетовым излучениям и выдерживает температуры от -40° С до +85° С.

Держатель для плоских стяжек (рис. 6), монтаж в глухом отверстии. Данный крепеж в основном используют для фиксации термокабеля на потолках и в стенах из бетона или кирпича.

L-образный кронштейн (рис. 7) обеспечивает надежное крепление термокабеля. При помощи отверстий в конструкции кронштейна можно регулировать положение термокабеля по высоте.

L-образная скоба (рис. 8). Металлическая скоба предназначена для крепления термокабеля на резервуарах для хранения нефти и нефтепродуктов с плавающей крышей, а также для крепления термокабеля в местах, где необходимо зафиксировать извещатель на расстоянии от плоской поверхности (стена, потолок и т.п.).

Держатель плоских стяжек (рис. 9), закрепляющийся винтом. По своим характеристикам схож с L-образной скобой. Фиксация термокабеля происходит при помощи кабельных стяжек. Предназначен для использования в закрытых помещениях.

КРЕПЕЖ ДЛЯ СКЛАДСКИХ ПОЛОК И ШВЕЛЛЕРОВ

На рисунке 10 представлен крепеж, который используется для жесткой фиксации термокабеля в различных случаях, в том числе для крепления термокабеля к швеллеру или складской полке.

На рисунке 11 представлен крепеж предназначенный для надежного крепления термокабеля к складским полкам (металлическим уголкам), либо к швеллеру. У этого крепежа имеется необходимый воздушный просвет между термокабелем и поверхностью, к которой он крепится.

Балочный зажим (рис. 12). Предназначен для крепления термокабеля к балочным конструкциям. Может использоваться вместе с монтажным зажимом.

КРЕПЕЖ ДЛЯ ПРОТЯЖЕННЫХ РАССТОЯНИЙ

Для крепления термокабеля на больших площадях, где нет возможности зафиксировать его на какой-либо поверхности, можно использовать конструкцию, состоящую из стального несущего троса (выдерживает нагрузку до 90 кг), болта с кольцом и талрепа, обеспечивающих необходимое натяжение несущего троса. Рекомендуется крепить термокабель к тросу через каждые 3 м. Расстояние между болтом с кольцом и талрепом, без промежуточного крепления, не должно превышать 75 м. Кроме того, рекомендуется устанавливать промежуточный крепеж несущего троса через каждые 15 м, во избежание провиса термокабеля. Элементы этой конструкции представлены на рисунке 13.

Рис. 17. Пример прокладки термокабеля (обозначен красным) в кабельных лотках

Рис. 18. Пример прокладки термокабеля для защиты конвейера

КРЕПЕЖ ДЛЯ ТРУБ И КАБЕЛЬНЫХ ЛОТКОВ

Двойная стяжка (рис. 14) предназначена для крепления термокабеля к трубам.

Хомутная стяжка (рис. 15). Универсальная кабельная стяжка. Используется для крепления термокабеля к тросу, к кабельным лоткам.

ЭЛЕМЕНТЫ ДЛЯ СРАШИВАНИЯ ТЕРМОКАБЕЛЯ

Обжимная втулка (рис. 16) предназначена для соединения двух участков термокабеля. Для работы используются специальные обжимные инструменты.

Клеммник для соединения термокабеля. Используется вместе с изолирующей лентой.

Рис. 19. Пример прокладки термокабеля для защиты резервуара с плавающей крышей

ПРИМЕРЫ УСТАНОВКИ ТЕРМОКАБЕЛЯ

Высокая эффективность, простота монтажа и возможность использования практически с любой системой пожарной сигнализации/системой пожаротушения делают термокабель универсальным средством обнаружения возгорания. Зачастую использование обычных пожарных извещателей неосуществимо из-за их специфики: невозможность установки при отрицательных температурах и влаге, эксплуатации при наличии пыли и сажи, установки в труднодоступных местах и в агрессивных средах. Поэтому использование линейного теплового пожарного извещателя является наиболее подходящим решением этих проблем. В настоящее время термокабель широко применяется для защиты тоннелей, автомобильных парковок, на предприятиях по обработке древесины, нефтяных, химических, цементных и углеобогатительных заводах.

Особенность термокабеля заключается в том, что он может быть проложен в непосредственной близости от защищаемого оборудования, а также во всех частях здания, включая лифтовые шахты, мусоропроводы, лестничные пролеты и другие труднодоступные места, кроме того термокабель можно использовать для защиты эскалаторов, трансформаторных подстанций, электродвигателей и т.п.

КАБЕЛЬНЫЕ ЛОТКИ:

Для защиты кабельных лотков рекомендуется прокладывать термокабель в каждом лотке, а также под каждым лотком, для защиты от возгорания мусора или пыли. Для лотка шириной 600 мм рекомендуется прокладывать один термокабель, для лотка шириной 900 мм - два.

Пример прокладки термокабеля в кабельных лотках (рис. 17). При защите кабельных лотков термокабель укладывается поверх всех кабелей питания и управления и имеет синусоидальную конфигурацию. При установке дополнительных кабелей в лоток, они должны укладываться под извещатель. В качестве крепления лучше всего использовать двойные хомуты стяжки либо стандартные хомуты стяжки.

ром, для этого извещатель должен быть закреплен параллельно конвейеру при помощи несущего троса, талрепа и болта с кольцом. Сам термокабель крепится к несущему тросу при помощи кабельных стяжек, либо обматывается вокруг троса. Расстояние между болтом с кольцом и талрепом, т.е. контролируемый участок, не должно превышать 75 м. Кроме того, во избежание провиса термокабеля, рекомендуется устанавливать промежуточный крепеж (анкерный болт с кольцом) несущего троса через каждые 15 м. Крепить извещатель рекомендуется к тросу минимум через каждые 3 м.

РЕЗЕРВУАРЫ ДЛЯ ХРАНЕНИЯ ГСМ С ПЛАВАЮЩЕЙ КРЫШЕЙ:

Для защиты резервуара с плавающей крышей рекомендуется прокладывать термокабель вокруг периметра плавающей крыши (рис. 19).

РЕЗЕРВУАРЫ ДЛЯ ХРАНЕНИЯ ГСМ С ФИКСИРОВАННОЙ КРЫШЕЙ:

Приводим пример прокладки термокабеля для защиты резервуара с фиксированной крышей на рисунке 20 (термокабель обозначен красным цветом).

Рис. 20. Пример прокладки термокабеля для защиты резервуара с фиксированной крышей (термокабель обозначен красным)

ЭСКАЛАТОРЫ:

Приводим пример установки термокабеля для защиты эскалатора на рисунке 21.

Рис. 21. Пример установки термокабеля для защиты эскалатора

ПАРКИНГ:

Приводим пример прокладки термокабеля для защиты паркинга на рисунке 22. Во избежание провиса термокабеля при установке на ровных потолках рекомендуется крепить извещатель как минимум через каждый метр.

Рис. 22. Пример прокладки термокабеля для защиты паркинга

ТОННЕЛИ:

Рис. 23. Пример установки термокабеля для защиты тоннелей

СКЛАДСКИЕ СТЕЛЛАЖИ:

Для защиты складских стеллажей термокабель размещается параллельно секциям стеллажей над каждым уровнем спринклерной системы единым кабелем при помощи подводящих проводоЕ (рис. 24).

Рис. 24. Пример прокладки термокабеля для защиты складских стеллажей

В заключение обратим внимание, что при проектировании и монтаже линейных тепловых пожарных извещателей на территории РФ следует руководствоваться требованиями НПБ 88-2001 или СП 5.13130.2009 для линейных тепловых пожарных извещателей и тепловых пожарных извещателей.

Редакция благодарит компанию ООО «Пожарная автоматика» за предоставленные материалы

В виду наращивания производства с применением дорогостоящего оборудования и увеличения численности технологического персонала на предприятиях нередко приходится заботиться о безопасности людей и технологического оборудования. В настоящее время в связи с ужесточением правил устройства систем безопасности нередко приходится задумываться о применении того или иного рода систем.

В данной статье будет рассматриваться инновационное решение в области обеспечения пожарной безопасности - устройство, представленное в виде кабеля.

Линейный пожарный извещатель, другое название термокабель - устройство способное обнаруживать изменение температуры, на участке котором он проложен, в случаях где невозможно установить другого рода пожарные извещатели.

Линейный пожарный извещатель представляет собой пару проводников изолированных между собой термочувствительной изоляцией, облочённых в дополнительный защитный изоляционный слой.

Принцип действия.

Принцип действия заключается в следующем при появлении возгорания или перегреве на участке, где применяется термокабель, происходит нарушение изоляционного слоя каждого проводника под действием пороговой температуры, при этом происходит замыкание проводников на отдельном или нескольких участках. Контрольный прибор принимает решение о изменении состояния на контрольном объекте.

Классификация термокабеля по типам применяемой внешней изоляции,

что в значительной мере влияет на применение извещателя в конкретных условиях окружающей среды:

  • Термокабель типа EPC, изоляция которого считается наиболее универсальной изоляцией выполненной из ПВХ материала, что позволяет применять её в промышленном и гражданском строительстве. Оболочка обеспечивает хорошую гибкость при прокладке кабеля при пониженных температурах. При этом обеспечивается надлежайшая огнестойкость и влагостойкость.
  • Термокабель типа EPR имеет полипропиленовую внешнюю оболочку значительно увеличивает огнестойкость и не распространяет влияния ультрафиолетового излучения окружающей среды. Как правило используется в средах с агрессивными химическими веществами, не подвержен истиранию. При этом надёжно функционирует в условиях повышенных температур окружающей среды.
  • Термокабель типа XLT, изоляция которого представляет собой изоляционный материал из полимера наивысшим образом способного противостоять экстремально низким температурам. основное предназначение такого рода изоляции применение извещателя на открытых площадках, в условия крайнего Севера, в холодильных и морозильных камерах.
  • Термокабель типа TRI имеет схожую по свойствам изоляцию типа EPC, но единственное уникальное отличие от остальных кабелей кабель TRI (TRI-Wire) способен выдавать два сигнала "Предтревога" и "Пожар", в зависимости от установки.
  • Термокабель типа XCR в буквальном смысле слова включает в себя все вышеприведённые типы оболочек. Высококачественная фторополимерная оболочка, специально разработанная для объектов специального назначения, с пониженным дымовыделением и газообразованием, механически стойкий на истирание, с высокой стойкостью к пониженным температурам. Также как и оболочка EPR стойко переносит агрессивные воздействия химически активных веществ и ультрафиолетового воздействия. А возможность использования при пониженных температурах позволяет произвести сходство с извещателем типа XLT. Качество оболочки позволяет подчеркнуть универсальность применяемого материала изоляции.

Классификацию термокабеля по условиям эксплуатации

рассмотрим на ниже следующем рисунке, что наглядно продемонстрирует способность применения той или иной изоляции в различных условиях окружающей среды.

Классификация термокабеля по температурным режимам.

На рисунке можно увидеть модель кабеля и соответствующее ей температуру срабатывания, в диапазоне рабочих температур.

Преимущество использования линейного пожарного извещателя:

Термокакабель обладает повышенной чувствительностью на температурные изменения на всей своей длине;

Наличие нескольких температурных режимов работы, обусловленных изготовлением устройств различного типа изготовления;

Устойчивость к окружающим условиям окружающей среды;

Высокая устойчивость к низким температурным режимам окружающей среды;

Низкая стоимость и простые решения по монтажу системы, сниженная стоимость эксплуатационных затрат.

Принципы построения системы:

Работа основана на принципе работы с нормально-разомкнутыми контактами, поэтому устройство контроля должны обладать особенностью контроля замыкания шлейфа связи$

Необходимо принимать во внимание то, что при выборе данного извещателя необходимо учитывать его внутренне сопротивление, обусловленное длинной термокабеля, 1 Ом на 1,5 м, что в последствии может повлиять на протяженность линии термокабеля на заданном участке;

При выборе данной системы на охраняемом участке стоит руководствоваться расчётом возможного сопротивления термокабеля и равномерно распределять общую длину на участке на несколько равномерных участков, в противном случае участок кабеля длинною более 2000 м может привести к ложному срабатыванию системы;

Монтаж необходимо производить цельным участком, не допуская разветвлений, производить разделения на зоны, которые обусловлены определение источника пожара в том или ином месте;

При планировании прокладки кабеля учитывать нормы и требования к прокладке кабеля.

Далее будут рассматриваться монтажные устройства, которые применяются в системах охранно-пожарной сигнализации с применением линейного пожарного извещателя, на основе оборудования поставляемой компанией Рrotectowire, одобренной ВНИИПО МЧС России.

Монтажные компоненты.

Монтажная зонная коробка ZB-4-QC-MP герметичного соединения линейного извещателя и шлейфа связи. Исполнение коробки позволяет обеспечить надёжную защиту соединительного узла от внешних воздействий окружающей среды, способствует обеспечению качественного соединения в широких диапазонах рабочих температур.

Пример применения рассмотренный ниже на рисунке показывает, что контактные соединители заключённые внутри коробки при таком использовании позволяют достойно обеспечивать соединение термокабеля и шлейфа связи, а также дополнительного сопротивления, обеспечивая его целостность.

Обжимная муфта SR-502

основное её назначение - обеспечениегерметизации ввода кабеля в монтажную зонную коробку ZB-4-QC-MP. Наборная муфта из стальных элементов и уплотнительных колец, позволяет получит надежное герметичное соединение с кабелем и коробкой, при этом не повреждая термочувствительную оболочку жил кабеля.

Крепёжные устройства.

Разработанные для быстрого, надёжного и в тоже время безопасного монтажа монтажные элементы позволяют постепенно в процессе протягивания закреплять кабель, при этом обеспечивая целостность термокабеля.

Представляемые ниже крепёжные элементы позволяют без дополнительного растягивания и сдавливания изоляции кабеля производить монтаж.

WAW зажим

внешний вид устройства позволяетгарантироватьпростое и надёжное крепления извещателя-кабеля к поверхностям, по которым он будет проложен. Принцип использования заключается в том что во внутрь зажима, материал которого в зависимости от условий прокладки может применятся двух типов, помещается кабель и без давления на внешнюю оболочку происходит его зажим.

По типу применяемого материала зажим может быть двух типов из нейлона (WAW-N) и из полипропилена (WAW-P). Полипропиленовые зажимы применимы при использовании в средах с высокой температурой, а нейлоновые в низкотемпературных средах до -40°C, и +88°C соответственно для полипропилена.

Особенностей монтажа на прямых участках нет, а вот в углах имеет место быть смещение точки установки крепежа внутрь изгиба кабеля на 1,3-2 см от пересечения линий кабеля, после закрепления на прямых участках.

Также для прямых участков применимы и более примитивные крепления типа OHS.

Линейные зажимы OHS

применяются для крепления линейного пожарного извещателя на прямых участках, как рекомендуется производителем, между зажимами типа WAW, при этом обеспечивая основную поддержку извещателя.

Зажим типа OHS-1 выполняется из оцинкованной стали, что обосновывает его использование для использования внутри помещения, а зажим типа OHS-1/4-SS выполнен из стали, что обосновывает его использование для использования на наружных установках.

Фиксация зажима производится по сути любым крепёжным изделием (болт, шуруп, шпилька и т.д.).

Рассмотренные монтажные крепежи позволяют производить крепление термокабеля на плоскости, но как правило при монтажных работах не всегда есть возможность произвести работы только на плоскости, или нет возможности установить на ней зажим, приходится местами подвешивать извещатель к строительным конструкция, где не получится производить крепление по тем или иным соображения, рассмотренными ранее методами, прибегают к использованию зажимов, которые без дополнительного нарушения целосности строительной позволит произвести прокладку кабеля.

Комплект зажимов серии BC

применяются для прокладки извещателя к строительным конструкциям, без нарушения её целостности, и разумного использования трудозатрат и времени монтажа. Находят применения при монтаже термокабеля на кабелегонах, организованных в лотках, по металлоконструкциям, фахферковым элементам конструкции и т.п.

Принцип крепления заключается в том что зажим типа BC закрепляется к конструкции, а уже к нему производится крепление термокабеля через зажим типа WAW.

По месту использования зажима различаются два типа зажимов.

Зажим BC-2, материал сталь, применяется для прокладки термокабеля внутри помещений.

Зажим BC-3, оцинкованная сталь, применяется для монтажа термокабеля на наружных конструкциях.

Монтажный комплект клеевого типа

в случаях где не допустимо произвести механическое крепление, а температурные условия и условия окружающей среды позволяют без особых требований к материалу используется крепёж состоящий из монтажной площадки и кабельной стяжки, который приклеивается, на специализированный, промышленный клей, что обеспечивает скорость монтажа и простоту работ.

Для обеспечения смещения термокабеля относительно точки крепления используется L-образная крепежная скоба RMC . L -образный держатель, на конце которого зажим WAW или кнопочная защёлка имеет пять отверстий для регулирования расстояния смещения. Также как и все рассмотренные ранее элементы крепежа данный держатель выполняется либо из листовой стали, либо нержавеющей стали, что обеспечивает его возможность применения как внутри, так и снаружи помещения.

Монтажные зажимы CC-2.

Представляют собой составную систему крепёжных элементов, которая позволяет быстро и удобно произвести монтаж линейного пожарного извещателя вдоль кабельного лотка с непосредственным креплением к лотку. Типовой зажим "Caddy" имеет специфический изгиб на одном из краёв, который позволяет при зацепиться за край кабельного лотка и надёжно удерживать его при навешивание на другой из его краёв термокабеля, закрепленного по средствам крепежа с защёлкой или зажима типа WAW.

Производитель для этих целей выпускает две модификации зажимов для лотка толщиной 1,6-4,0 мм и лотка толщиной 4,0-6,0 мм, модели CC-2N и CC-2W соответственно.

При использовании другого зажима типа "Caddy" имеется возможность таким же образом производить крепление к более толстым элементам кабельного лотка.

Монтажные зажимы CC-10.

Схожие по принципу работы с зажимами типа CC-2. Дополнительно ко всему ранее сказанному данный тип зажима имеет возможности дополнительного механического воздействия для крепления зажима к лотку, при использовании болтового соединения, в таком случае зажим рекомендуется для монтажа линейного пожарного извещателя в местах подверженных вибрации.

Модификации крепежа представлены двумя видами:

CC-10N применяются для лотков толщиной стенки 3,2 - 6,4 мм;

CC-10W применяются для лотков толщиной стенки 7,9 - 12,7 мм.

Менее сложный, но также функциональный способ крепления термокабеля может быть возможен при наличии таких изделий.

Монтажный зажим HPC-2.

Стойкий к УФ излучению окружающей среды и имеющий скобу, которая позволяет произвести зацеп замка крепления к материалу толщиной 1,5 - 6,4 мм, данный зажим позволит без дополнительных трудозатрат произвести монтаж линейного пожарного извещателя. Термокабель вкладывается в зажим, который крепится на соответствующую назначению конструкцию. Материал - нейлон.

Таким же простым методом крепления возможно произвести монтаж термокабеля с использованием хомутов.

Хомуты PM-3.

При прокладки линейного пожарного извещателя вдоль спринклерных систем пожаротушения, требовалось решение задачи подвеса термокабеля к трубной магистрали, для чего и были внедрены такие хотуты.

Система хомут в хомуте позволяет одним хомутом произвести крепления самого крепёжного элемента, а вторым притягивается термокабель, при этом нет контакта извещателя с трубой, а самое главное не перетягивается место обжатия кабеля, при этом не нарушается внутренний изоляционный слой жил.

Нейлоновые хомуты эксплуатируются при температурах от -40 °C и до +85 °C, при этом температура монтажа недолжна быть ниже 0 °C.

Всё вышеописанное тем или иным образом относитится к одному способу монтажа. Далее будем рассматривать способ прокладки на струне при использовании несущего троса.

Н есущий тр ос.

Эксклюзивный способ поставки линейного пожарного извещателя заключается в том что несущий трос уже интегрирован в извещатель. Нити из нержавеющей стали располагаются непосредственно под одной внешней оплёткой. Кабель обвивает нити с периодом в 0,3 м. Жилы придают кабелю дополнительную жёсткость, что позволит применять его в местах где нет возможности произвести крепления обычным способом.

Способ монтажа предельно понятный, заключается в том, что концы на прямом участке пожарного извещателя крепят к неподвижным частям или проушинам и при помощи талрепа производят натяжку.

Длинна такого участка не должна превысить 76 м, в противном случае возможен обрыв кабеля.

Также для предотвращения обрыва термокабеля на протяжении участка использования линейного пожарного извещателя устанавливают поддерживающие элементы. Частота применения таких элементов определяется условиями эксплуатации, что показывает практика при наружном использовании рекомендовано чаще применять элемент, дабы обеспечить поддержку и распределение нагрузки, от наледи, снеговую нагрузку на всю протяжённость термокабеля.

С развитием технологий появилось новое противопожарное оборудование, где функцию быстрого, точного определения возгорания выполняют линейные тепловые извещатели (ЛТИ).

Первостепенной задачей линейных извещателей является обеспечение безопасности помещений с постоянным или временным пребыванием людей, сохранением и защитой материального имущества от огня на территориях объектов пожарной охраны.

Устройство термокабеля

Наиболее удобным противопожарным тепловым датчиком является термокабель. Его используют там, где другие устройства установить невозможно, например, в емкостях с горючими веществами, на теплотрассах, в ядерных реакторах.

Конструкция линейного теплового пожарного извещателя или термокабеля имеет устойчивую функциональность, низкий эксплуатационный расход, большой срок службы.

Защищая оборудование и объекты от возгорания путем контроля температуры, он формирует определенный сигнал при ее изменении, дает возможность ликвидировать пожар без существенного материального ущерба.

Современный термокабель, доступный и простой в работе, представляет собой два витых триметаллических проводника, которые имеют напыление:

  • из стали. Обеспечивает прочность в растяжении;
  • меди. Увеличивается электропроводимость, снижается сопротивление;
  • олова. Для повышения коррозийной стойкости;
  • термочувствительного полимера.

Два проводника, скрученные между собой для сохранения механического натяжения, дополнительно заключаются в оболочку из нейлона или полипропилена, обеспечивая надежную защиту кабеля от УФ лучей. Оболочка также повышает устойчивость к химической агрессивной и едкой среде. Противодействие к механическому износу осуществляется с помощью оплетки металлической или стеклонитей. Температурный диапазон использования линейного теплового извещателя составляет от ─60 до + 180 ℃, что позволяет эксплуатировать кабель в разных климатических условиях.

Принцип действия и применение

Принцип действия термокабеля основан на нарушении целостности изоляционного материала за счет перегрева под действием увеличения температуры окружающей среды. В результате разрушения изоляции происходит замыкание проводников, о чем подается сигнал на пульт. Сигнал тревоги может формироваться на любом участке кабеля, не зависимо от его длины. При обнаружении тревожных факторов возгорания передача информации линейными тепловыми извещателями является процессом пороговым или аналоговым.

Пожарный датчик, соответствуя ГОСТу, по своему назначению может устанавливаться как внутри помещений, так и снаружи на открытых площадках большой протяженности. Режим работы системы пожарной безопасности зависит от устройства линейного извещателя. Основными техническими характеристиками являются чувствительность, инерционность, зона действия (ее форма и площадь), а также помехозащищенность.



Более широкие возможности дает тепловой линейный прибор, имеющий кумулятивный эффект, где блок обработки сопротивления проводников может устанавливаться вне зоны контроля. Нагревающий кабель, обеспечивающий суммирование всех опасных факторов, широко используется для быстрого обнаружения пожара на трансформаторных подстанциях, тепловых и гидроэлектростанциях, авиационных ангарах.

Его устанавливают на нефтегазовых предприятиях, металлургических и химических производствах, транспортных тоннелях в труднодоступных, с повышенным загрязнением, запыленных местах с агрессивной и взрывоопасной средой.

Виды линейных тепловых датчиков

Отечественный рынок противопожарного оборудования предлагает модели линейных тепловых извещателей, различающиеся по материалу защитной оболочки, температурному режиму срабатывания, системе контроля и управления. Производитель, ориентируясь на условия применения, выпускает несколько видов тепловых линейных пожарных извещателей.

Наибольшее распространение получили:

  • электронный, не допускающий короткого замыкания, но фиксирующий изменение сопротивления при нагревании. Температурным датчиком является материал, покрывающий провода, имеющий отрицательный температурный коэффициент. Кабель, действующий совместно с электронным блоком управления, создает разные температурные пороги, легко восстанавливает свою функциональность после кратковременного теплового воздействия;
  • механический линейный тепловой извещатель многоразового действия. Температурный контроль осуществляется с помощью непроницаемой длинной (до 300 м) трубки из металла. Трубка заполнена газом, при нагревании его давление увеличивается, это фиксирует блок управления;
  • обычные контактные линейные извещатели одноразового действия. В качестве датчика температуры используется полимерная оболочка, способная расплавляться при определенном нагреве, нанесенная на два провода свитых друг с другом;
  • оптоволоконный линейный тепловой датчик. Универсальный оптический кабель, который отличается оперативным определением различных видов пожара. Датчик температуры состоит из опросного устройства с лазерным источником и оптоволоконного кабеля с безгалогеновой оболочкой, что дает возможность проводить тепловой контроль на большом расстоянии. Факторами использования кабеля служат, доступная цена, надежность, долговечность, удобство монтажа.

Можно выделить еще один, пиротехнический вид. Такой линейный извещатель может выполнять функции тушения пожара. Пиротехнические элементы при нагревании срабатывают, открывают клапаны и выпускают огнетушащее вещество.

Усовершенствованное противопожарное оборудование гарантирует безопасность от огня всем общественным, производственным, административным сооружениям.

Популярные модели

Современные тепловые модели отличаются по виду, слою внешней защитной оболочки, условиям применения. Наиболее известными марками являются Protectowire, Пожтехника, Спецприбор, Thermocable, Этра.

Таблица. Технические характеристики термокабеля Protectowire

Обозначение Логика работы Температура срабатывания, °С Диапазон рабочих температур, °С Область применения
PHSC-155-EPC На одну температуру 68 -44… +105 Нормальные условия
PHSC-190-EPC 65,6
PHSC-280-EPC 93,3
PHSC-356-EPC 105
PHSC-155-EPR 68 Агрессивные среды
PHSC-190-EPR 65,6
PHSC-280-EPR 93,3
PHSC-356-EPR 105
PHSC-135-XLT 57 Низкие
температуры
PHSC-6893-TRI Комбинированный
(две температуры)
68 — "Внимание"
93 — "Пожар"
Получение двойной сработки

ИПЛТ тип EPC, произведенный по лицензии Protectowire, – универсальный термопровод с оболочкой из ПВХ. Он используется вне помещения, когда условия природной среды не предполагают установку обычного теплового извещателя. Имеет высокую стойкость к сырости, пылеобразованию, способность ограничивать распространение пламя.

Термокабель сохраняет хорошую изгибаемость. Сохраняя состояние материала, извещатель при атмосферном воздействии и УФ, не требует обслуживания и больших расходов во время эксплуатации.

ИПЛТ тип XLT – вид термокабеля специально создан для работы при предельно низких температурах. Модуль извещателя с супер прочной полимерной оболочкой, выдерживает ─55°C, предназначен для применения в теплоизолированных контейнерах, в сооружениях для хранения, неотплимаемых производственных зданиях, суровых климатических условиях Севера.

ИПЛТ тип TRI – термокабель, является уникальным линейным тепловым извещателем. Новый тип датчиков с высокой химической устойчивостью, способный противостоять разрушающему воздействию водных растворов кислоты, щелочей, предназначен для использования во взрывоопасной среде. Термопровод, защищенный металлической плетеной сеткой, способен устоять электромагнитному излучению, устранить с поверхности статическое электричество. При установке требует двухстороннего заземления.

Дымовые линейные извещатели широко используются в системах пожарной безопасности. Они незаменимы для защиты объектов с протяженными зонами и со сложными условиями эксплуатации. К таким объектам можно отнести производственные цеха, склады, ангары, тоннели, музеи, церкви, театры, спортивные залы, и пр., где установка точечных извещателей сложна, а порой даже невозможна.

Отмечается более раннее обнаружение возгорания линейным извещателем по сравнению с точечными дымовыми извещателями в реальных условиях. В данной статье рассматриваются принцип действия линейных извещателей, варианты их конструкции, приводится оценка эффективности линейных извещателей в сравнении с точечными дымовыми извещателями.

Принцип работы и варианты конструкции линейного извещателя

На рис. 1 изображена простейшая модель дымового линейного извещателя, позволяющая понять принцип его работы. Извещатель состоит из приемника и передатчика, как правило, инфракрасного сигнала, которые размещаются на противоположных сторонах защищаемой зоны, под потолком. Инфракрасный диапазон спектра используется обычно для снижения влияния естественного и искусственного освещения, а для снижения токопотребления применяются импульсные сигналы с большой скважностью. Стабильный по уровню сигнал передатчика фиксируется приемником. В случае возникновения возгорания, дым с нагретым при тлении материалов воздухом поднимается к потолку и "растекается" по нему, постепенно увеличивая заполненную им площадь. Прохождение сигналов передатчика через задымленную среду сопровождается их затуханием. В приемнике вычисляется отношение уровня текущей величины сигнала к уровню сигнала, соответствующего оптически прозрачной среде. Как только отношение достигает установленного порога, формируется сигнал ПОЖАР, который по шлейфу транслируется на приемно-контрольный прибор (ПКП).

На сегодняшний день существует два основных варианта конструкции линейных извещателей: двухкомпонентные, состоящие из отдельных блоков приемника и передатчика, и современные однокомпонентные - один блок приемо-передатчика с пассивным рефлектором. Выше был описан принцип работы двухкомпонентного извещателя. Принцип работы однокомпонентного линейного извещателя отличается от двухкомпонентного только тем, что импульсный сигнал проходит контролируемую зону два раза: от приемопередатчика до рефлектора и обратно.

Построение линейного извещателя определяет требования к техническим характеристикам компонентов, их конструкции и размещению. Для двухкомпонентного извещателя необходимо обеспечить стабильный уровень сигнала передатчика во всем диапазоне рабочих температур и напряжений питания, т.к. снижение уровня сигнала передатчика приводит к формированию ложного сигнала ПОЖАР. Приемник должен обеспечивать хранение значения уровня опорного сигнала и корректировку порога срабатывания при запылении оптики в процессе эксплуатации.

Кроме того, для увеличения энергетического потенциала в приемнике и передатчике используются оптические системы, обеспечивающие достаточно узкие диаграммы направленности. Такое построение определяет сложность настройки и эксплуатации линейных извещателей. Для обеспечения работоспособности необходимо проведение достаточно трудоемкой юстировки, при которой устанавливается положение приемника и передатчика, соответствующее приему максимума сигнала. Изменение положения приемника или передатчика в процессе эксплуатации вызывает отклонение диаграммы направленности, снижение уровня сигнала и формирование ложного сигнала ПОЖАР, который не сбрасывается без переюстировки извещателя. После сброса производится сравнение пониженного за счет разъюстировки уровня сигнала с уровнем сигнала при чистой оптической среде и выдается подтверждение сигнала ПОЖАР. Ситуация для извещателя не отличается от подтверждения сигнала ПОЖАР при наличии дыма. Соответственно, крепление приемника и передатчика допускается только на капитальные конструкции. Форму диаграммы направленности выбирают таким образом, чтобы незначительное смещение опорных конструкций не нарушало работоспособность линейного извещателя. Обычно допускается в процессе эксплуатации смещение максимума диаграммы направленности относительно оптической оси в пределах порядка ±0,5°, что соответствует при расстоянии между приемником и передатчиком 10 метров смещению луча на ±87 мм, а при расстоянии 100 метров - на ±870 мм.

Для обеспечения работы двухкомпонентных извещателей при различных дальностях обычно требуется использование нескольких уровней сигнала передатчика и регулировка усиления приемника, что создает дополнительные трудности при настройке и юстировке. Другой существенный недостаток - необходимость подключения и передатчика, и приемника к источнику питания - это значительный расход кабеля, обычно превышающий расстояние между приемником и передатчиком. Кроме того, при установке в одном помещении параллельно нескольких линейных извещателей необходимо исключить попадание на приемник сигналов от соседних передатчиков. Некоторые производители в этом случае рекомендуют устанавливать приемники и передатчики в шахматном порядке, что приводит к дополнительному увеличению расхода кабеля и монтажных работ. Причем монтаж этой части шлейфа обычно затруднен из-за высоких потолков, или из-за необходимости выполнения скрытой проводки.

Практически все эти недостатки отсутствуют у однокомпонентных дымовых линейных извещателей (рис. 2). Пассивный рефлектор состоит из большого числа призм, структура которых обеспечивает отражение сигнала в направлении источника. Таким образом, рефлектор не требует питания и юстировки. Соответственно в несколько раз сокращается расход кабеля, трудоемкость монтажа и юстировки. Более того, рефлектор может быть установлен на некапитальные и даже вибрирующие конструкции. У современных линейных извещателей допускается изменение положения рефлектора в пределах ±10°. При больших углах появляется снижение уровня отраженного сигнала за счет уменьшения проекции рефлектора на плоскость перпендикулярную оптической оси, т.е. за счет уменьшения эквивалентной площади рефлектора.

Размещение приемника и передатчика в одном блоке обеспечивает возможность автоматического выбора диапазона измерения уровня сигнала при юстировке, автоматическую подстройку уровня излучения передатчика и коэффициента усиления приемника в зависимости от дальности контролируемой зоны.

Кроме того, дополнительно появляется возможность временной селекции сигналов, возможность использования одного рефлектора при близком расположении двух-трех извещателей, возможность компенсации изменения оптической плотности, не связанной с возникновением пожароопасной ситуации, в течение суток для исключения ложных срабатываний и т.д.

Чувствительность линейного извещателя и ее контроль

Чувствительность линейного извещателя определяется аналогично оптическому точечному, но характеризуется значением оптической плотности среды для установленной максимальной дальности, при которой извещатель срабатывает. Требования к таким извещателям определены в НПБ 82-99 «Извещатели пожарные дымовые оптико-электронные линейные. Общие технические требования. Методы испытаний». Согласно указанным НПБ, чувствительность извещателя должна находиться в пределах от 0,4 дБ (снижение интенсивности луча на 9%) до 5,2 дБ (снижение интенсивности луча на 70%). В технической документации может указываться чувствительность в дБ или в процентах. Снижению сигнала на ∆% соответствует ослабление на L дБ:

L = 10lg дБ (1)

В таблице 1 приведен пример расчета по формуле (1).

Таблица 1

%

дБ

Современные линейные извещатели имеют несколько порогов чувствительности и компенсацию запыления оптики, что позволяет учесть условия эксплуатации, исключить ложные срабатывания и снизить расходы на техническое обслуживание.

Рис.3 Компенсация запыления оптической системы

Рис.4 Адаптивный порог

Рис.5 Пример тестового аттенюатора

Рис.6 Затенение рефлектора

При достижении границы диапазона автоматической компенсации современные извещатели формируют отдельный сигнал "Обслуживание", указывающий на необходимость проведения технического обслуживания (см. рис. 3).

В наше время встречаются линейные извещатели без автокомпенсации запыления оптических систем. По мере их загрязнения будет повышаться чувствительность такого извещателя, соответственно появятся ложные срабатывания, исключение которых потребует частых чисток оптики. Увеличение объема технического обслуживания при установке таких линейных извещателей на значительной высоте может достаточно быстро скомпенсировать выигрыш на стоимости оборудования.

Линейные извещатели последнего поколения для исключения ложных срабатываний, вызванных увеличением оптической плотности в контролируемом помещении в рабочие часы, имеют так называемые адаптивные пороги (см. рис. 4). В отличии от фиксированного порога в этом случае медленные изменения оптической плотности среды в течении суток компенсируются в заданных пределах. В широко известном линейном извещателе 6500 кроме четырех фиксированных уровней чувствительности 25%, 30%, 40%, 50% затухания имеются два адаптивных уровня 30% - 50% и 40% - 50%. При установке адаптивного порога, например, 30% - 50% реально чувствительность будет поддерживаться на уровне 30% и не потребуется ее загрублять до 50% для исключения ложных срабатываний в рабочие часы.

Линейный извещатель реагирует на затухание излучения, которое можно имитировать, установив перед оптической системой передатчика или приемника фильтр (аттенюатор) с определенной величиной прозрачности. Такой фильтр обычно имеет периодическую структуру, например, в виде точек на прозрачном материале, или в виде отверстий в непрозрачном материале, диаметр которых значительно меньше размеров оптической системы приемника и передатчика (рис. 5). Отношение непрозрачной площади фильтра к общей площади определяет процент вносимого затухания.

Для контроля чувствительности двухкомпонентного линейного извещателя достаточно иметь по два фильтра на каждый уровень чувствительности. Например, для контроля порога срабатывания 30% можно использовать два фильтра с затуханием 25% и 35%. Эти фильтры являются простейшими устройствами и обычно входят в комплект высококачественных линейных извещателей западного производства. Эти оптические фильтры обеспечивают полную проверку работоспособности линейного извещателя в процессе эксплуатации. Причем можно проконтролировать отсутствие изменения чувствительности при изменении температуры или при загрязнении оптики.

Для тестирования однокомпонентного извещателя также можно использовать оптические фильтры соответствующих размеров, устанавливая их перед приемопередатчиком или перед рефлектором. Однако в однокомпонентном линейном извещателе проще вводить ослабление сигнала путем "затенения" определенной площади рефлектора (рис. 6). Для случая равномерного облучения рефлектора имеется простая зависимость затухания сигнала от величины его площади. Такой способ контроля чувствительности реализован в однокомпонентном извещателе 6500. На его рефлекторе нанесена шкала от 10% до 65% с дискретом 5%, по которой определяется величина затухания сигнала при изменении площади затенения. Таким образом, можно с высокой точностью измерить чувствительность извещателя 6500 на любом из четырех порогов 25%, 30%, 40%, 50% (1.25 дБ, 1.55 дБ, 2.22 дБ, 3.01 дБ) без использования фильтров.

Часто возникает вопрос: почему для имитации затухания сигнала на 30% необходимо закрывать более половины площади рефлектора, а для 50% - примерно 3/4 площади? Ошибки здесь нет, так как в однокомпонентном линейном извещателе, в отличии от двухкомпонентного извещателя, сигнал проходит контролируемую зону два раза: от приемопередатчика до рефлектора и обратно. Соответственно, при реальном задымлении ослабляющем сигнал на 3 дБ (на 50%), к приемо-передатчику вернется сигнал ослабленный на 6 дБ (на 75%). Простой расчет для рефлектора без шкалы, например, уровень установленной чувствительности 30%, при ослаблении сигнала на 30% до рефлектора дойдет 70% сигнала, т.е. 0,7 от первоначального уровня, и на обратном пути тоже останется 0,7 от отраженного от рефлектора, а всего вернется 0,7х0,7=0,49 или 49%, затухание составит 1-0,49=0,51, т.е. 51%. Этот эффект показывает еще одно преимущество однокомпонентного линейного извещателя: его потенциальная чувствительность в два раза выше, чем у двухкомпонентного, а реально при установлении одинаковой чувствительности выше помехозащищенность из-за увеличения в два раза порога.

Эффективность линейного дымового извещателя

Некорректное тестирование линейного дымового извещателя даже опытными инсталляторами приводит к ложным выводам о его более низкой чувствительности по сравнению с точечным оптико-электронным извещателем. Действительно, если при поступлении дыма в оптическую камеру быстро происходит активизация обычного датчика, то аналогичное "задымление" светофильтра линейного извещателя не вызывает никакой реакции. Подобное тестирование не может показать работоспособность ни линейного, ни точечного извещателя, т.к. задымление незначительного объема помещения вблизи извещателей даже отдаленно не воспроизводит физические процессы, сопровождающие реальное возгорание.

Проведем сравнение эффективности линейного извещателя с точечными дымовыми извещателями по чувствительности. Для получения возможности сравнения необходимо оценить чувствительность этих извещателей в одних единицах: чувствительность линейного извещателя определяется в абсолютных единицах затухания, а чувствительность точечного извещателя задается в удельных единицах, т.е. величина затухания на расстоянии один метр или один фут. В соответствии с НПБ 65-97 "Извещатели пожарные дымовые оптико-электронные" чувствительность точечных извещателей определяется при испытаниях в аэродинамической трубе замкнутого типа, где через извещатель проходит воздух с аэрозолью (НПБ 65-97 Приложение 1) и должна устанавливаться в пределах 0,05 - 0,2 дБ/м. Для перевода абсолютного значения затухания в удельные единицы оптической плотности среды необходимо его разделить на протяженность зоны в метрах. Соответственно, требованиям НПБ 82-99 по чувствительности линейного дымового извещателя от 0,4 дБ до 5,2 дБ при равномерном задымлении 10 метровой зоны соответствует удельная оптическая плотность в пределах от 0,04 дБ/м до 0,52 дБ/м, а при протяженности зоны 100 метров - в пределах от 0,004 дБ/м до 0,052 дБ/м.

Рис.7 Аэродинамическая труба

1 - электрическая плитка ø200мм
2 - термопара
3 - деревянные бруски

Рис.8 Очаг ТП-2

Рис.9 Очаг ТП-3


Рис.10 Размеры помещения и схема расположения

Теоретически при постоянной чувствительности эффективность линейного извещателя повышается с увеличением протяженности защищаемой зоны. Однако этот эффект проявляется только в сравнительно узких невысоких помещениях и на стадии полного задымления помещения. В реальных условиях необходимо учитывать ограничение зоны задымления на первом этапе возгорания. Нагретый воздух от очага возгорания при подъеме к потолку и распространении вдоль него охлаждается и не распространяется на всю площадь подпотолочного пространства большого помещения. Чем выше потолок, тем меньше задымленная площадь под потолком. Этот эффект определяет уменьшение защищаемой дымовыми точечными и линейными извещателями площади при увеличении высоты помещения (см. таблицы 5, 6 НПБ 88-2001*).

С другой стороны, чувствительность точечного дымового извещателя, измеренная в аэродинамической трубе, не сопоставима с чувствительностью в реальных условиях. В месте расположения извещателя скорость воздушного потока увеличивается за счет уменьшения сечения трубы и возникает турбулентность, которая отсутствует при распространении дыма вблизи потолка. Для снижения этого эффекта необходимо увеличивать сечение аэродинамической трубы, что определяет габариты и стоимость данного оборудования. На рис. 7, в качестве иллюстрации, показана установка для испытаний дымовых пожарных извещателей в компании Систем Сенсор. Этот способ тестирования при производстве извещателей позволяет контролировать стабильность чувствительности.

Для получения информации об эффективности извещателя в реальных условиях используются тестовые пожары, методика проведения которых и критерии оценки результатов приведены в европейском стандарте по дымовым извещателям точечным EN54 ч. 7 и линейным EN54 ч. 12, а также в российском ГОСТ Р50898-96 "Извещатели пожарные. Огневые испытания".

Существует шесть типов тестовых пожаров: ТП-1 - открытое горение древесины, ТП-2 - тление древесины, ТП-3 - тление хлопка, ТП-4 - горение полиуретана, ТП-5 - горение гептана и ТП-6 - горение спирта. Дымовые точечные извещатели испытываются по четырем тестовым пожарам ТП-2, ТП-3, ТП-4, ТП-5. Каждый тестовый очаг не только состоит из определенного материала, но и имеет вполне определенную конфигурацию и размеры. Очаг ТП-2 состоит из 10 высушенных буковых брусков (влажность ~5%) размерами 75 х 25 х 20 мм, расположенных на поверхности электрической плиты диаметром 220 мм, имеющей 8 концентрических пазов глубиной 2 мм и шириной 5 мм, внешний паз должен располагаться на расстоянии 4 мм от края плиты, расстояние между смежными пазами должно составлять 3 мм (см. рис. 8), мощность плиты должна быть примерно 2 кВт.Очаг ТП-3 состоит примерно из 90 хлопковых фитилей длиной 800 мм и массой примерно 3г каждый, прикрепленных к проволочному кольцу диаметром 100 мм, подвешенному на штативе (см. рис. 9). Собранные в пучок концы фитилей поджигают открытым пламенем, затем пламя задувают до появления тления, сопровождающегося свечением.

Очаг ТП-4 состоит из трех матов из пенополиуретана (без добавок, повышающих огнестойкость) плотностью 20 кг/м 3 и размерами 500 х 500 х 20 мм каждый, уложенные один на другой, которые воспламеняются при помощи 5 мл спирта в емкости диаметром 50 мм, установленной под углом нижнего мата. Очаг ТП-5 - это 650г гептана с добавлением 3% толуола в квадратном поддоне из стали размерами 330х330х50 мм.

Испытания проводятся в помещении длиной 9 - 11 метров, шириной 6 - 8 метров и высотой 3,8 - 4,2 метров, в центре которого на полу располагается тестовый очаг пожара. Тестируемые точечные извещатели располагаются на потолочном перекрытии по окружности на расстоянии 3 м от его центра в секторе 60° (см. рис. 10). Здесь же установлены измеритель оптической плотности среды m (дБ/м), радиоизотопный измеритель концентрации продуктов горения Y (относительные единицы) и измеритель температуры Т (°С). Два тестируемых линейных извещателя располагаются симметрично и их оптические оси находятся на расстоянии 2,5 метров от центра помещения.

По результатам испытаний для каждого вида тестового очага извещатели разделяются на три группы, не считая не прошедших испытание: класс А (наиболее чувствительный) с предельными значениями Т1=15°С, m1=0,5 дБ/м, Y1=1,5; класс В (средний) Т2=30°С, m2=1 дБ/м, Y2=3,0 и класс С (наименее чувствительный) Т3=60°С, m3=2,0 дБ/м, Y3=6,0. Таким образом, допускается различие в оптической плотности внутри дымовой камеры и открытом пространстве более чем в 10 раз: наименьшая чувствительность по НПБ 65-97 в дымовом канале 0,2 дБ/м, а по тестовым пожарам 2,0 дБ/м. И противоречия здесь нет: в испытательном помещении по ГОСТ Р 50898-96 размером 10±1 м х 7±1 м и высотой 4±0,2 метра сказывается аэродинамическое сопротивление дымозахода пожарного извещателя. Неудачная конструкция дымозахода и дымовой камеры пожарного извещателя, относительно низкая площадь дымозахода по сравнению с внутренним объемом извещателя могут привести к снижению чувствительности в реальных условиях более чем в 10 раз. В той или иной степени этот эффект проявляется у любого точечного дымового извещателя с дымовой камерой и с конструктивными элементами для защиты от пыли.

В линейном дымовом извещателе этот эффект полностью отсутствует, так как дым поступает в контролируемую зону без преодоления каких-либо препятствий. Таким образом, линейный извещатель с порогом 3 дБ (50%) при равномерном задымлении на протяжении даже 10 метров обеспечивает чувствительность эквивалентную удельной оптической плотности среды 0,3 дБ/м. Т. е. по классификации точечных дымовых извещателей по ГОСТ Р 50898-96 соответствует самому чувствительному классу А. При пороге 1,25 дБ (25%) соответственно получаем эквивалентную удельную оптическую плотность среды 0,125 дБ/м, что в 4 раза выше нижней границы класса А.

Кроме того, линейный дымовой извещатель обеспечивает лучшую эффективность по обнаружению различных типов пожаров, по сравнению с точечными оптико-электронными, ионизационными и тепловыми извещателями (таблица 2).

Таблица 2. Чувствительность пожарных извещателей к тестовым очагам пожара
(О - отлично обнаруживает; Х - хорошо обнаруживает; Н - не обнаруживает)

Тип тестового пожара
ТП-1 ТП-2 ТП-3 ТП-4 ТП-5 ТП-6
Характеристика Открытое горение древесины Пиролиз древесины Тление хлопка Открытое горение пластмассы Горение гептана Горение спирта
Основные сопутствующие факторы Дым, пламя, тепло Дым Дым Дым, пламя, тепло Дым, пламя, тепло Пламя, тепло
Тепловой Х Н Н Х Х Н
Дымовой оптический Н О О Х Х О
Дымовой ионизационный О Х Х О О Н
Комбинированный тепловой, дымовой оптический и дымовой ионизационный О О О О О О
Дымовой линейный Х О О О О Н

В таблице 3 приведены результаты натурных испытаний дымовых линейных извещателей 6500 на тестовые пожары c установленной чувствительностью 40% (2,22 дБ) при расстоянии между приемопередатчиком и рефлектором 5 метров.

Таблица 3. Результаты испытаний дымовых линейных извещателей

Вид ТП

№ п/п

Время активизации (мин:сек)

ТП-2 (тление древесины) 1 9:36 0.92 0.64 -
2 9:32 0.92 0.64 -

ТП-3 (тление хлопка)

1 5:02 2.69 0.42 -
2 5:02 2.71 0.43 -

ТП-4 (горение полиуретана)

1 1:04 1.92 0.56 4.35
2 1:04 1.92 0.56 4.35
ТП-5 (горение гептана) 1 1:33 2.67 0.52 16.98
2 1:29 2.54 0.45 18.06

Данные результаты подтверждают отсутствие зависимости чувствительности линейного извещателя 6500 от вида дыма. Он одинаково хорошо реагирует как на "светлые" дымы, выделяющиеся при тлении дерева и текстильных материалов, так и на "черные" дымы, выделяющиеся при горении пластика, изоляции кабеля, резинотехнических изделий, битумных материалов и т.д. Для сравнения в таблице 4 приведены результаты испытаний дымовых точечных оптико-электронных извещателей. Эти испытания проводились в разное время, вследствие чего имеются различия в скоростях нарастания оптической плотности среды, концентрации взвешенных частиц и температуры.

Таблица 4. Результаты испытаний дымовых точечных оптико-электронных извещателей

Вид ТП

№ п/п

Время активизации (мин:сек)

Параметры тестового очага при активизации

Y
ТП-2 (тление древесины) 1 7:47 0.73 0.80 -
2 6:10 0.52 0.46 -
3 7:49 0.79 0.80 -
4 6:53 0.63 0.59 -
ТП-3 (тление хлопка) 1 6:09 1.49 0.95 -
2 5:29 1.04 0.58 -
3 5:48 1.37 0,86 -
4 5:35 1.11 0.72 -
ТП-4 (горение полиуретана) 1 2:11 3.35 0.91 8.4
2 2:15 3.61 1.00 10.3
3 2:17 3.61 1.00 10.3
4 2:17 3.61 1.00 10.3
ТП-5 (горение гептана) 1 2:45 4.58 0.92 19.1
2 2:21 3.69 0.80 17.1
3 2:17 3.73 0.81 17.0
4 2:13 3.53 0.81 16.0

Таким образом, даже при сравнительно невысоких потолках (4 м) и незначительной протяженности оптического луча (5 м), линейный извещатель активизируется при меньших уровнях удельной оптической плотности среды по сравнению с точечными оптико-электронными извещателями. Причем, если для точечного извещателя условия проведения испытаний соответствуют условиям эксплуатации на большинстве объектов с незначительными отклонениями, то для линейных извещателей эти условия наиболее неблагоприятные для его работы. С увеличением протяженности защищаемой зоны при фиксированном уровне чувствительности в абсолютных единицах затухания линейный извещатель будет активизироваться соответственно при меньших значениях удельной оптической плотности. С увеличением высоты помещения преимущества еще больше усиливаются, т.к. рассеивание дыма на большой высоте влияет на линейный извещатель в меньшей степени, чем на обычный точечный.

Заключение

Современные дымовые линейные извещатели при корректной установке и настройке обеспечивают высокий уровень противопожарной защиты. Они высокоэффективны при обнаружении практически любых типов очагов пожара с различными дымами: от тления дерева и текстиля до горения пластика, резины, битума, изоляции кабеля, что обеспечивает универсальность их применения. Использование линейного извещателя однокомпонентной конструкции в сравнении с двухкомпонентным сокращает в несколько раз объем монтажных работ, расход кабеля и время юстировки.

Системы безопасности S&S "Groteck" №3 (81), 2008