Реферат: Жизненный цикл информационных систем. Жизненный цикл информационных систем

Реферат: Жизненный цикл информационных систем. Жизненный цикл информационных систем

Понятие жизненного цикла является одним из базовых понятий методологии про­ектирования информационных систем. Жизненный цикл информационной сис­темы представляет собой непрерывный процесс, начинающийся! с момента приня­тия решения о создании информационной системы и заканчивается в момент полного изъятия ее из эксплуатации.

Стандарт ISO/IEC 12207 определяет структуру жизненного цикла, содержащую процессы, действия и задачи, которые должны быть выполнены во время создания информационной системы. Согласно данному стандарту структура жизненного цикла основывается на трех группах процессов:

1. основные процессы жизненного цикла (приобретение, поставка, разработка, эксплуатация, сопровождение);

2. вспомогательные процессы, обеспечивающие выполнение основных процессов (документирование, управление конфигурацией, обеспечение качества, вери­фикация, аттестация, оценка, аудит, разрешение проблем);

3. организационные процессы (управление проектами, создание инфраструктуры проекта, определение, оценка и улучшение самого жизненного цикла, обучение).

Среди основных процессов жизненного цикла наибольшую важность разработка, эксплуатация и сопровождение. Каждый процесс характеризуется определенными задачами и методами их решения, исходными данными; полученными на предыдущем этапе, и результатами.

1. Разработка

Разработка информационной системы включает в себя все работы по разработке информационного программного обеспечения и его компонентов в соответствии с заданными требованиями. Разработка информационного программного обеспечения также включает:

1. оформление проектной и эксплуатационной документации;

2. подготовку материалов, необходимых для проведения тестирования тайных программных продуктов;

3. разработку материалов, необходимых для организации обучения персонала.

Разработка является одним из важнейших процессов жизненного цикла информационной системы и, как правило, включает в себя стратегическое планирование, анализ, проектирование и реализацию (программирование).

2. Эксплуатация

Эксплуатационные работы можно подразделить на подготовительные и основные. К подготовительным относятся:

1. конфигурирование базы данных и рабочих мест пользователей;

2. обеспечение пользователей эксплуатационной документацией;

3. обучение персонала.

Основные эксплуатационные работы включают;

1. непосредственно эксплуатацию;

2. локализацию проблем и устранение причин их возникновения;

3. модификацию программного обеспечения;

4. подготовку предложений по совершенствованию системы;

5. развитие и модернизацию системы.

3. Сопровождение

Службы технической поддержки играют весьма заметную роль в жизни любой корпоративной информационной системы. Наличие квалифицированного технического обслуживания на этапе эксплуатации информационной системы яв­ляется необходимым условием для решения поставленных перед ней задач. При­чем ошибки обслуживающего персонала могут приводить к явным или скрытым финансовым потерям сопоставимым со стоимостью самой информационной си­стемы.



Модели жизненного цикла

Под моделью жизненного цикла понимается структура, определяющая последовательность выполнения и взаимосвязи процессов, действий и задач, выполняемых на протяжении жизненного цикла. Модель жизненного цикла зависит от специфики информационной системы и специфики условий, в которых последняя создается и функционирует

К настоящему времени наибольшее распространение получили следующие основные модели жизненного цикла:

1. задачная модель;

2. каскадная модель (или системная) (70-85 г.г.);

3. спиральная модель (настоящее время).

Задачная модель

При разработке системы "снизу-вверх" от отдельных задач ко всей системе (задачная модель) единый поход к разработке неизбежно теряется, возникают проблемы при информационной стыковке отдельных компонентов. Как правило, по мере увеличения количества задач трудности нарастают, приходится постоянно изменять уже существующие программы и структуры данных. Скорость развития системы замедляется, что тормозит и развитие самой организации. Однако в отдельных случаях такая технология может оказаться целесообразной:

Крайняя срочность (надо чтобы хоть как-то задачи решались; потом придется все сделать заново);

Эксперимент и адаптация заказчика (не ясны алгоритмы, решения нащупываются методом проб и ошибок).

Общий вывод: достаточно большую эффективную информационной системы таким способом создать невозможно.

Каскадная модель

В ранних не очень больших по объему однородных информационных систем каждое приложение представляло собой единое целое. Для разработки такого типа приложений применялся каскадный способ. Его основной характеристикой является разбиение всей разработки на этапы, причем переход с одного этапа на следующий происходит только после того, как будет полностью завершена работа на текущем (рис. 2). Каждый этап завершается выпуском полного комплекта документации, достаточной для того, чтобы разработка могла быть продолжена другой командой разработчиков.

Положительные стороны применения каскадного подхода заключаются в следующем:

на каждом этапе формируется законченный набор проектной документации, отвечающий критериям полноты и согласованности;

выполняемые в логичной последовательности этапы работ позволяют планировать сроки завершения всех работ и соответствующие затраты.

Рис. . Каскадная схема разработки

Каскадный подход хорошо зарекомендовал себя при построении информационных систем, для которых в самом начале разработки можно достаточно точно и полно сформулировать все требования, с тем, чтобы предоставить разработчикам свободу реализовать их как можно лучше с технической точки зрения. В эту категорию попадают сложные расчетные системы, системы реального времени и другие подобные задачи. Однако в процессе использования этого подхода обнаружился ряд его недостатков, вызванных прежде всего тем, что реальный процесс создания систем никогда полностью не укладывался в такую жесткую схему. В процессе создания постоянно возникала потребность в возврате к предыдущим этапам и уточнении или пересмотре ранее принятых решений. В результате реальный процесс создания программного обеспечения принимал следующий вид (рис. 3):

Рис. 3. Реальный процесс разработки ПО по каскадной схеме

Основным недостатком каскадного подхода является существенное запаздывание с получением результатов. Согласование результатов с пользователями производится только в точках, планируемых после завершения каждого этапа работ, требования к информационным системам "заморожены" в виде технического задания на все время ее создания. Таким образом, пользователи могут внести свои замечания только после того, как работа над системой будет полностью завершена. В случае неточного изложения требований или их изменения в течение длительного периода создания программного обеспечения, пользователи получают систему, не удовлетворяющую их потребностям. Модели (как функциональные, так и информационные) автоматизируемого объекта могут устареть одновременно с их утверждением. Сущность системного подхода к разработке ИС заключается в ее декомпозиции (разбиении) на автоматизируемые функции: система разбивается на функциональные подсистемы, которые в свою очередь делятся на подфункции, подразделяемые на задачи и так далее. Процесс разбиения продолжается вплоть до конкретных процедур. При этом автоматизируемая система сохраняет целостное представление, в котором все составляющие компоненты взаимоувязаны. Таким образом, данная модель основным достоинством имеет системность разработки, а основные недостатки - медленно и дорого.

Спиральная модель

Для преодоления перечисленных проблем была предложена спиральная модель жизненного цикла (рис. 4), делающая упор на начальные этапы жизненного цикла: анализ и проектирование. На этих этапах реализуемость технических решений проверяется путем создания прототипов. Каждый виток спирали соответствует созданию фрагмента или версии программного обеспечения, на нем уточняются цели и характеристики проекта, определяется его качество и планируются работы следующего витка спирали. Таким образом, углубляются и последовательно конкретизируются детали проекта и в результате выбирается обоснованный вариант, который доводится до реализации.

Разработка итерациями отражает объективно существующий спиральный цикл создания системы. Неполное завершение работ на каждом этапе позволяет переходить на следующий этап, не дожидаясь полного завершения работы на текущем. При итеративном способе разработки недостающую работу можно будет выполнить на следующей итерации. Главная же задача - как можно быстрее показать пользователям системы работоспособный продукт, тем самым, активизируя процесс уточнения и дополнения требований.

Основная проблема спирального цикла - определение момента перехода на следующий этап. Для ее решения необходимо ввести временные ограничения на каждый из этапов жизненного цикла. Переход осуществляется в соответствии с планом, даже если не вся запланированная работа закончена. План составляется на основе статистических данных, полученных в предыдущих проектах, и личного опыта разработчиков.

Рис 4. Спиральная модель ЖЦ ИС

Одним из возможных подходов к разработке программного обеспечения в рамках спиральной модели жизненного цикла является получившая в последнее время широкое распространение методология быстрой разработки приложений RAD (Rapid Application Development). Под этим термином обычно понимается процесс разработки программного обеспечения, содержащий 3 элемента:

небольшую команду программистов (от 2 до 10 человек);

короткий, но тщательно проработанный производственный график (от 2 до 6 мес.);

повторяющийся цикл, при котором разработчики, по мере того, как приложение начинает обретать форму, запрашивают и реализуют в продукте требования, полученные через взаимодействие с заказчиком.

Жизненный цикл программного обеспечения по методологии RAD состоит из четырех фаз:

1. фаза определения требований и анализа;

2. фаза проектирования;

3. фаза реализации;

4. фаза внедрения.


Лекция 6. Классификация информационных систем

Информационная система - взаимосвязанная совокуп­ность средств, методов и персонала, используемых для хра­нения, обработки и выдачи информации в интересах дости­жения поставленной цели

Классификация по масштабу

По масштабу информационные системы подразделяются на следующие группы:

1. одиночные;

2. групповые;

3. корпоративные.

Одиночные информационные системы реализуются, как правило, на автономном персональном компьютере (сеть не используется). Такая система может содержать несколько простых приложений, связанных общим информационным фондом, и рассчитана на работу одного пользователя или группы пользователей, разделяющих по времени одно рабочее место. Подобные приложения создайся с помощью так называемых настольных или локальных систем управления базами данных (СУБД). Среди локальных СУБД наиболее известными являются Clarion, Clipper, FoxPro, Paradox, dBase и Microsoft Access.

Групповые информационные системы ориентированы на коллективное использова­ние информации членами рабочей группы и чаще всего строятся на базе локальной вычислительной сети. При разработке таких приложений используются серверы баз данных (Называемые также SQL-серверами) для рабочих групп. Существует доволь­но большое количество различных SQL-серверов, как коммерческих, так и свобод­но распространяемых. Среди них наиболее известны такие серверы баз данных, как Oracle, DB2, Microsoft SQL Server, InterBase, Sybase, Informix.

Корпоративные информационные системы являются развитием систем для рабочих групп, они ориентированы на крупные компании и могут поддерживать тер­риториально разнесенные узлы или сети. В основном они имеют иерархическую структуру из нескольких уровней. Для таких систем характерна архитектура кли­ент-сервер со специализацией серверов или же многоуровневая архитектура. При разработке таких систем могут использоваться те же серверы баз данных, что и при разработке групповых информационных систем. Однако в крупных информационных системах наибольшее распространение получили серверы Oracle, DB2 и Microsoft SQL Server.

Для групповых и корпоративных систем существенно повышаются требования к надежности функционирования и сохранности данных. Эти свойства обеспечиваются поддержкой целостности данных, ссылок и транзакций в серверах баз.

Классификация по сфере применения

По сфере применения информационные системы обычно подразделяются на четыре группы:

1. системы обработки транзакций;

2. системы принятия решений;

3. информационно-справочные системы;

4. офисные информационные системы.

Системы обработки транзакций , в свою очередь, по оперативности обработки данных, разделяются на пакетные информационные системы и оперативные инфор­мационные системы. В информационных системах организационного управлений преобладает режим оперативной обработки транзакций, для отражения актуального состояния предметной области в любой момент времени, а пакетная обработка занимает весьма ограниченную часть.

Системы поддержки принятия решений - DSS (Decision Support Systeq) - пред­ставляют собой другой тип информационных систем, в которых с помощью довольно сложных запросов производится отбор и анализ данных в различных разрезах: временных, географических и по другим показателям.

Обширный класс информационно-справочных систем основан на гипертекстовых документах и мультимедиа. Наибольшее развитие такие информационные систе­мы получили в сети Интернет.

Класс офисных информационных систем нацелен на перевод бумажных докумен­тов в электронный вид, автоматизацию делопроизводства и управление докумен­тооборотом.

Классификация по способу организации

По способу организации групповые и корпоративные информационные системы подразделяются на следующие классы:

1. системы на основе архитектуры файл-сервер;

2. системы на основе архитектуры клиент-сервер;

3. системы на основе многоуровневой архитектуры;

4. системы на основе Интернет/интранет - технологий.

В любой информационной системе можно выделить необходимые функциональ­ные компоненты, которые помогают понять ограничения различных архитектур информационных систем.

Архитектура файл-сервер только извлекает данные из файлов так, что дополнительные пользователи и приложения добавляют лишь незначительную нагрузку на центральный процессор. Каждый новый клиент добавляет вычислительную мощность к сети.

Архитектура клиент-сервер предназначена для разрешения проблем файл-сервер­ных приложений путем разделения компонентов приложения и размещения их там, где они будут функционировать наиболее эффективно. Особенностью архитектуры клиент-сервер является использование выделенных серверов баз данных, пони­мающих запросы на языке структурированных запросов SQL (Structured Query Language) и выполняющих поиск, сортировку и агрегирование информации.

В настоящее время архитектура клиент-сервер получила признание и широкое распространение как способ организации приложений для рабочих групп и информационных систем корпоративного уровня. Подобная организация работы повышает эффективность выполнения приложений за счет использования воз­можностей сервера БД, разгрузки сети и обеспечения контроля целостности дан­ных.

Многоуровневая архитектура стала развитием архитектуры клиент-сервер и в своей классической форме состоит из трех уровней:

1. нижний уровень представляет собой приложения клиентов, имеющие программ­ный интерфейс для вызова приложения на среднем уровне;

2. средний уровень представляет собой сервер приложений;

3. верхний уровень представляет собой удаленный специализированный сервер базы данных.

Трехуровневая архитектура позволяет еще больше сбалансировать нагрузку на разные узлы и сеть, а также способствует специализации инструментов для раз­работки приложений и устраняет недостатки двухуровневой модели клиент-сер­вер.

В развитии технологии Интернет/интранет основной акцент пока что делается на разработке инструментальных программных средств. В то же время наблюдается отсутствие развитых средств разработки приложений, работающих с базами данных. Компромиссным решением для создания удобных и простых в использовании и сопровождении информационных систем, эффективно работающих с базами данных, стало объединение Интернет/интранет-технологии с многоуровневой архитектурой. При этом структура информационного приложения приобретает следующий вид: браузер - сервер приложений - сервер баз данных - сервер динамических страниц - web-сервер.

По характеру хранимой информации БД делятся на фактографические и документальные . Если проводить аналогию с описанными выше примерами информационных хранилищ, то фактографические БД - это картотеки, а документальные - это архивы. В фактографических БД хранится краткая информация в строго определенном формате. В документальных БД - всевозможные документы. Причем это могут быть не только текстовые документы, но и графика, видео и звук (мультимедиа).

Автоматизированная система управления (АСУ) - это комплекс технических и программных средств, совместно с организационными структурами (отдельными людьми пли коллективом), обеспечивающий управление объектом (комплексом) в производственной, научной или общественной среде.

Выделяют информационные системы управления образования (Например, кадры, абитуриент, студент, библиотечные программы). Автоматизированные системы для научных исследований (АСНИ), представляющие собой программно-аппаратные комплексы, обрабатывающие данные, поступающие от различного рода экспериментальных установок и измерительных приборов, и на основе их анализа облегчающие обнаружение новых эффектов и закономерностей.Системы автоматизированного проектирования и геоинформационные системы.

Систему искусственного интеллекта, построенную на основе высококачествен­ных специальных знании о некоторой предметной области (полученных от экспер­тов - специалистов этой области), называют экспертной системой. Экспертные системы - один из немногих видов систем искусственного интеллекта - получили широкое распространение, и нашли практическое применение. Существу­ют экспертные системы по военному делу, геологии, инженерному делу, информа­тике, космической технике, математике, медицине, метеорологии, промышленности, сельскому хозяйству, управлению, физике, химии, электронике, юриспруденции и т.д. И только то, что экспертные системы остаются весьма сложными, дорогими, а главное, узкоспециализированными программами, сдерживает их еще более широ­кое распространение.

Экспертные системы (ЭС) - это компьютерные программы, созданные для выполнения тех видов деятельности, которые под силу человеку-эксперту. Они работают таким образом, что имитируют образ действий человека-эксперта, и существенно отличаются от точных, хорошо аргументированных алгоритмов и не похожи на математические процедуры большинства традиционных разработок.

УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ФИНАНСОВАЯ АКАДЕМИЯ

ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ»

Кафедра «Информационные технологии»

РЕФЕРАТ

Тема: «Роль экономиста в создании и эксплуатации

Выполнила:

студентка группы У5-3

Научный руководитель:

профессор кафедры «Информационные технологии»

д. э.н., профессор

Москва 2007

Введение.. 3

1. Стадии и этапы разработки информационных систем... 4

1.1. Жизненный цикл информационных систем.. 4

1.2. CASE-технологии проектирования ИС.. 8

1.3. Модели жизненного цикла, применяемые в CASE-технологиях. 8

1.4. Принципы создания и функционирования экономических информационных систем 12

1.5. Требования стандартов по разработке информационных систем.. 12

2. Роль экономиста на различных фазах жизненного цикла информационной системы бухгалтерского учета.. 16

2.1. Предпроектная стадия жизненного цикла. 16

2.2. Проектирование и разработка информационной системы.. 19

2.3. Внедрение информационной системы.. 19

Заключение.. 20

Литература.. 20


Введение

В последние десятилетия эффективность управления и развития бизнеса , других значимых сфер жизнедеятельности человека определяют профессионально-ориентированные корпоративные информационные системы (ИС). Основанные на применении средств электронно-вычислительной техники, телекоммуникационных систем , специализированного программного обеспечения и современных информационных технологий , они позволяют оперативно решать различные прикладные задачи анализа и обработки информации , – как поступающей в реальном масштабе времени, так и больших ее массивов, хранимых в базах, банках и хранилищах данных.

Важное место среди профессионально-ориентированных ИС играют информационные системы бухгалтерского учета (ИС БУ). Примером такой системы, занимающей лидирующее положение в России и ряде зарубежных стран, является программный продукт «1С: Бухгалтерия 8.0», входящей в систему программ «1С: Предприятие 8.0».

Система «1С: Бухгалтерия 8.0» предназначена для автоматизации бухгалтерского и налогового учета, включая подготовку обязательной (регламентированной) отчетности, в организациях, осуществляющих любые виды коммерческой деятельности: оптовую и розничную торговлю, оказание услуг, производство и т. д. Бухгалтерский и налоговый учет ведется в соответствии с действующим законодательством Российской Федерации .

Структурно система «1С: Бухгалтерия 8.0» включает технологическую платформу «1С: Предприятие 8.0» и конфигурацию «Бухгалтерия предприятия». Конфигурация, являясь прикладным решением, определяет правила ведения учета; она должна быть настроена на структуру, профиль и особенности конкретного предприятия. И в этом, прежде всего, роль экономиста в создании и внедрении ИС БУ, хотя, безусловно, проектирование и разработка ИС БУ, осуществляемая фирмой 1С, не может быть реализована без тесного взаимодействия IT-специалистов с профессиональными экономистами, менеджерами, бухгалтерами, аудиторами, экспертами различных управленческих уровней, прежде всего высших и средних.

На этапе эксплуатации ИС БУ главная роль переходит к профессионалам экономического профиля – именно они, в первую очередь представители низшего звена, используют ИС БУ для решения прикладных финансово-экономических задач.

Для уточнения, более полного раскрытия роли экономистов в создании и эксплуатации ИС БУ в коммерческой организации рассмотрим стадии и этапы разработки информационных систем, а затем выполним оценку взаимодействия IT-специалистов и профессионалов-экономистов на различных фазах жизненного цикла ИС БУ.

1. Стадии и этапы разработки информационных систем

1.1. Жизненный цикл информационных систем

Любая ИС создается, эксплуатируется и развивается во времени. Данное утверждение позволяет говорить о жизни, или жизненном цикле ИС, охватывающем все стадии и этапы ее появления, существования и развития – от возникновения потребности в ИС определенного целевого назначения до полного прекращения ее использования вследствие морального старения или потери необходимости решения соответствующих задач.

Жизненный цикл ИС достаточно продолжителен. Создание ИС, как сложных систем, предназначенных для длительной регулярной эксплуатации во многих организациях, характеризуется жестким, строго регламентированным промышленным подходом. К ИС предъявляются особые требования по их эффективности, надежности, помехоустойчивости функционирования, выбору модели хранения данных. Часто ставится задача получения результатов за четко определенное время, не превышающее заданное. Значительное внимание уделяется отладке и тестированию – как отдельных компонент, так и всей ИС в целом. Вводятся элементы дублирования с использованием методов многовариантного программирования, когда одна и та же задача одновременно решается по нескольким алгоритмам и результат определяется при совпадении выходных значений каждого из них. С целью локализации ошибок и нераспространения их влияния устанавливаются программные блоки защиты и восстановления от сбоев и ошибок, вызванных поступлением на обработку недопустимых либо искаженных исходных данных, неисправностью аппаратуры или возможностью реализации в комплексе некорректного интерфейса между какими-то его многочисленными компонентами.

Требования к ИС строго формализуются и фиксируются в техническом задании . Существенное внимание уделяется планированию работ, организации труда в коллективе специалистов, число которых может достигать сотен и тысяч человек, управлению работами и контролю за их выполнением, а также соблюдением заданных программных характеристик. Внедрение в эксплуатацию предваряется проведением многоступенчатых испытаний в специально сформированных или реальных условиях. Обязательной является фаза сопровождения и связанная с этим необходимость подготовки качественной программной документации, тиражирования и передачи ИС в другие эксплуатирующие организации. Общее время жизни ИС может достигать десяти и более лет, из которых 70 – 90% может приходиться на фазы эксплуатации и сопровождения. Длительность эксплуатации может вызвать необходимость модернизации ИС и, соответственно, возврата к ранее пройденным фазам.

В начале 80-х годов прошлого века известный отечественный ученый предложил следующую схему жизненного цикла ИС (рис. 1.1).

Рис. 1.1. Схема жизненного цикла ИС по

После появления потребности и постановки задачи начинается фаза системного анализа. Определяются необходимость в комплексе программ ИС, его назначение и основные функциональные характеристики. Оцениваются трудозатраты, сроки разработки и возможная эффективность применения. Завершается фаза формированием и утверждением технического задания .

Следующей фазой является проектирование . Оно включает разработку структуры ИС и ее компонент, алгоритмизацию, программирование модулей и их отладку, разработку программной документации, а также испытания и внедрение созданной версии программного изделия для регулярной эксплуатации.

Фаза эксплуатации заключается в функционировании ИС для анализа и обработки информации и получения результатов, явившихся целью ее создания, а также в обеспечении достоверности и надежности выдаваемых данных.

Фаза сопровождения состоит в эксплуатационном обслуживании ИС. Осуществляется сбор информации о результатах эксплуатации . При необходимости выполняется тиражирование комплекса программ ИС и программной документации и осуществляется их передача в другие организации. Для устранения ошибок , выявленных в процессе эксплуатации, ИС подвергается доработке или модификации. При возникновении необходимости расширения функций ИС проверяется целесообразность таких операций и при положительном исходе она модернизируется.

В случае, когда модернизация нецелесообразна (экономически не выгодна) или исчезла необходимость в решении задач ИС, ее жизненный цикл завершается прекращением эксплуатации .

Схема жизненного цикла ИС (программного изделия как большого комплекса программ вместе с программной документацией), предложенная, опиралась на принятые в нашей стране, начиная с 1977 года, Государственные стандарты Единой системы программной документации (ГОСТ ЕСПД). Она послужила развитием каскадной модели жизненного цикла , используемой на западе в 70-е – 85-е годы прошлого века при разработке сложных ИС (рис. 1.2). Суть каскадной модели: вся разработка разбивается на несколько этапов. Переход на следующий этап происходит только после полного завершения работ на предыдущем этапе.

Каскадный подход имеет ряд положительных сторон:

    на каждом этапе формируется законченный набор проектной документации , отвечающий критериям полноты и согласованности; выполняемые в логичной последовательности этапы работ позволяют планировать сроки завершения всех работ и соответствующие затраты.

Рис. 1.2. Схема каскадного подхода к построению ИС

Недостатком каскадного подхода является необходимость предварительного полного и точного формулирования всех требований к характеристикам создаваемой ИС со стороны заказчика, в связи с чем модель ближе отражает реальные процессы, так как предусматривает обратные связи с ранее пройденными этапами.

Устраняя недостатки каскадной модели, в 80-е годы прошлого века на западе была предложена «водопадная » модель (waterfall model) разработки ИС, отражающая реальные процессы (рис. 1.3).

В 86-е – 90-е годы прошлого века получила развитие спиральная модель жизненного цикла ИС (рис. 1.4), в которой основной упор сделан на начальные этапы – анализ и проектирование. Реализуемость технических решений проверяется путем создания прототипов.

Рис. 1.3. «Водопадная» модель разработки ИС

Рис. 1.4. Спиральная модель жизненного цикла ИС

Каждый виток спирали соответствует созданию нового фрагмента или версии ИС, на нем уточняются цели и характеристики проекта, определяется его качество и планируются работы следующего витка спирали. Один виток спирали при этом представляет собой законченный проектный цикл по типу каскадной схемы.

Вторым названием спиральной модели является «продолжающееся проектирование». Позднее, когда в проектный цикл дополнительно стали включать стадии разработки и опробования прототипа системы, она получила название «быстрого прототипирования» (rapid prototyping approach или fast-track).

Применение методов разработки ИС на базе спиральной модели наряду с быстрым эффектом дает снижение управляемости проектом в целом и стыкуемости различных фрагментов ИС. Основная проблема спирального цикла – определение момента перехода на следующий этап. Переход осуществляется в соответствии с планом, даже если не вся запланированная работа закончена. План составляется на основе статистических данных, полученных в предыдущих проектах, и личного опыта разработчиков.

1.2. CASE-технологии проектирования ИС

Возрастающая сложность современных ИС и повышение требовательности к ним обусловливают применение эффективных технологий создания и сопровождения ИС в течение всего жизненного цикла. Такие технологии, базирующиеся на методологиях подготовки ИС и соответствующих комплексах интегрированных инструментальных средств, а также ориентированные на поддержку полного жизненного цикла ИС или ее основных этапов, получили название CASE-технологий и CASE-средств. Для успешной реализации проекта ИС должны быть построены полные и непротиворечивые функциональные и информационные модели системы управления. Накопленный опыт проектирования указанных моделей показывает, что это логически сложная, трудоемкая и длительная по времени работа, требующая высокой квалификации участвующих в ней специалистов. Однако во многих случаях проектирование ИС выполняется в основном на интуитивном уровне с применением неформальных методов, основанных на искусстве, практическом опыте и экспертных оценках. Кроме того, в процессе создания и функционирования ИС информационные потребности пользователей могут изменяться или уточняться, что еще более усложняет разработку и сопровождение ИС. От перечисленных недостатков в наибольшей степени свободны подходы, основанные на программно-технических средствах специального класса – CASE-средствах, реализующих CASE-технологии создания и сопровождения ИС.

Под термином CASE (Computer Aided Software Engineering) понимаются программные средства, поддерживающие процессы создания и сопровождения ИС, включая анализ и формулировку требований, проектирование прикладного программного обеспечения и баз данных , генерацию кода, тестирование, документирование, обеспечение качества, конфигурационное управление и управление проектом, а также другие процессы.

CASE-средства вместе с системным программным обеспечением и техническими средствами образуют полную среду разработки ИС.

1.3. Модели жизненного цикла, применяемые в CASE-технологиях

Применение CASE-технологий опирается на понятия жизненного цикла программного обеспечения ИС. Используются ранее описанные схемы, несколько модифицированные применительно к новым реалиям. Так, например, каскадная модель, усовершенствованная Марри Кантором (2002 г.), предполагает необходимость (рис. 1.5):

· четкого планирования действий по разработке системы;

· планирование работ, связанных с каждым действием;

· применения операций отслеживания хода выполнения действий с контрольными этапами.

Опираясь на результаты разработки крупных IT-проектов и проблемы, которые при этом возникали, М. Кантор поддерживает вывод, сделанный Фредериком Бруксом в книге «Мифический человеко-месяц» (1995 г.) – «в реальном мире, особенно в мире бизнес-систем, каскадная модель не должна применяться», так как требования к таким системам «характеризуются высокой динамикой корректировки и уточнения, невозможностью четкого и однозначного определения до начала работ по реализации».

Рис. 1.5. Каскадная модель жизненного цикла по М. Кантору

Спиральная эволюционная модель, в развитие которой внесли вклад Мартин Фаулер (2004 г.), Скотт Амблер (2004 г.), определяет эволюционную модель как сочетание итеративного и инкрементального подходов – последовательное выполнение итераций и наращивание функциональных возможностей ИС (рис. 1.6).

Скотт Амблер предлагает использовать несколько уровней жизненного цикла, определяемых соответствующим содержанием работ (рис.1.7).

1. Жизненный цикл разработки программного обеспечения – проектная деятельность по разработке и развертыванию программных систем.

2. Жизненный цикл программной системы – включает разработку, развертывание, поддержку и сопровождение.

3. Жизненный цикл информационных технологий (ИТ) – включает всю деятельность ИТ-департамента.

4. Жизненный цикл организации/бизнеса – охватывает всю деятельность организации в целом.

Рис. 1.6. Снижение неопределенности и инкрементальное расширение функциональности при итеративной организация жизненного цикла


Рис.1.7. Содержание четырех категорий жизненного цикла по С. Амблеру

Барри Боэм (1988 г.) связал спиральную модель с рисками , влияющими на организацию жизненного цикла. Он выделил 10 наиболее распространенных (по приоритетам) рисков:

1) дефицит специалистов;

2) нереалистичные сроки и бюджет;

3) реализация несоответствующей функциональности;

4) разработка неправильного пользовательского интерфейса;

5) «золотая сервировка», перфекционизм, ненужная оптимизация и оттачивание деталей;

6) непрекращающийся поток изменений;

7) нехватка информации о внешних компонентах, определяющих окружение системы или вовлеченных в интеграцию;

8) недостатки в работах, выполняемых внешними по отношению к проекту ресурсами;

9) недостаточная производительность получаемой системы;

10) «разрыв» в квалификации специалистов разных областей знаний.

Большая часть рисков связана с организационными и процессными аспектами взаимодействия специалистов в проектной команде.

Модель жизненного цикла Б. Боэма представлена на рис. 1.8.

Рис. 1.8. Оригинальная спиральная модель жизненного цикла разработки ИС по Б. Боэму

1.4. Принципы создания и функционирования экономических информационных систем

Создание экономических ИС (ЭИС) – сложное и трудоемкое дело, требующее значительной подготовки и организации. Эффективность функционирования разработанной ИС в значительной мере зависит от научно-обоснованных методов ее создания.

Выделяют несколько принципов создания и функционирования ЭИС.

1. Принцип системности. Позволяет четко определить цели создания ЭИС и общие свойства, присущие системе как единому целому; выявляет критерии декомпозиции системы и многообразные типы связей между ее элементами.

2. Принцип развития. Предопределяет ЭИС как систему, способную к развитию и совершенствованию при использовании новейших технологий процесса обработки данных.

3. Принцип совместимости. ЭИС строится как открытая система, ориентированная на максимальное использование стандартов программного, технического и иного обеспечения.

4. Принцип непосредственного участия. В процессе обследования и создания ЭИС принимают непосредственное участие работники предприятия (фирмы).

5. Принцип безопасности. Обеспечивается безопасность всех информационных процессов, сохранность и целостность коммерческой информации, циркулируемой в ЭИС.

6. Принцип эффективности. Достижение рационального соотношения между затратами на создание ЭИС и результатами, полученными в процессе ее эксплуатации.

Стандарт 12207 определяет структуру жизненного цикла, содержащую процессы, действия и задачи, которые должны быть выполнены во время создания ИС. Данная структура базируется на трех группах процессов:

    основные процессы жизненного цикла (приобретение, поставка, разработка, эксплуатация, сопровождение); вспомогательные процессы (документирование, управление конфигурацией, обеспечение качества, аттестация, аудит, решение проблем); организационные процессы (управление проектами, создание инфраструктуры проекта, улучшение самого жизненного цикла, обучение).

Стандарт 12207определяет высокоуровневую архитектуру жизненного цикла. Жизненный цикл начинается с идеи или потребности, которую необходимо удовлетворить с использованием программных средств, а может быть и не только их. Архитектура строится как набор процессов и взаимных связей между ними. Например, основные процессы жизненного цикла обращаются к вспомогательным процессам, в то время как организационные процессы действуют на всем протяжении жизненного цикла и связаны с основными процессами.

Дерево процессов жизненного цикла представляет собой структуру декомпозиции жизненного цикла на соответствующие процессы (группы процессов). Декомпозиция процессов строится на основе двух важнейших принципов, определяющих правила разбиения жизненного цикла на составляющие процессы. Эти принципы:

1) Модульность:

    задачи в процессе являются функционально связанными; связь между процессами – минимальна; если функция используется более чем одним процессом, она сама является процессом; если Процесс Y используется Процессом X и только им, значит Процесс Y принадлежит Процессу X (является его частью или его задачей), за исключением случаев потенциального использования Процесса Y в других процессах в будущем.

2) Ответственность:

    каждый процесс находится под ответственностью конкретного лица (управляется и/или контролируется им), определенного для заданного жизненного цикла, например, в виде роли в проектной команде; функция, чьи части находятся в компетенции различных лиц, не может рассматриваться как самостоятельный процесс.

Приобретение (5.1). Процесс (в ГОСТ его называют «Заказ») определяет работы и задачи заказчика, приобретающего программное обеспечение или услуги, связанные с ПО, на основе контрактных отношений. Процесс приобретения состоит из следующих работ (названия ГОСТ 12207 даны в скобках, если предлагают другой перевод названий работ оригинального стандарта):

    инициирование (подготовка); подготовка запроса на предложение (подготовка заявки на подряд); подготовка и корректировка договора; мониторинг поставщика (надзор за поставщиком); приемка и завершение (приемка и закрытие договора).

Поставка (5.2). Процесс определяет работы и задачи поставщика:

    инициирование (подготовка); подготовка предложения (подготовка ответа); разработка контракта (подготовка договора); планирование; выполнение и контроль; проверка и оценка; поставка и завершение (поставка и закрытие договора).

Разработка (5.3). Процесс определяет работы и задачи разработчика:

    определение процесса (подготовка процесса); анализ системных требований (анализ требований к системе); проектирование системы (проектирование системной архитектуры) анализ программных требований (анализ требований к программным средствам); проектирование программной архитектуры; детальное проектирование программной системы (техническое проектирование программных средств); кодирование и тестирование (программирование и тестирование программных средств); интеграция программной системы (сборка программных средств); квалификационные испытания программных средств; интеграция системы в целом (сборка системы); квалификационные испытания системы; установка (ввод в действие); обеспечение приемки программных средств.

Работы могут пересекаться по времени, т. е. проводиться одновременно или с наложением, а также могут предполагать рекурсию и разбиение на итерации.

Эксплуатация (5.4). Процесс определяет работы и задачи оператора службы поддержки:

    определение процесса (подготовка процесса); операционное тестирование (эксплуатационные испытания); эксплуатация системы; поддержка пользователя.

Сопровождение (5.5). Процесс определяет работы и задачи, проводимые специалистами службы сопровождения:

    определение процесса (подготовка процесса); анализ проблем и изменений; внесение изменений; проверка и приемка при сопровождении; миграция (перенос); вывод программной системы из эксплуатации (снятие с эксплуатации).

Стандарт 12207 не определяет последовательность и разбиение выполнения процессов во времени, адресуя этот вопрос по адаптации стандарта к конкретным условиям, окружению и применению выбранных моделей, практик, техник и т. п.

Таким образом, в настоящее время регламентирован процесс разработки ИС: определены фазы жизненного цикла, стадии и этапы разработки ИС, предусмотрена совместная деятельность IT-специалистов – разработчиков ИС и профессионалов-экономистов.

2. Роль экономиста на различных фазах жизненного цикла информационной системы бухгалтерского учета

2.1. Предпроектная стадия жизненного цикла

Проведенный анализ применяемых моделей жизненного цикла показывает наличие многовариантности описания процесса проектирования, разработки, эксплуатации и сопровождения ИС. В связи с этим для оценки роли экономистов на различных стадиях и этапах ИС БУ воспользуемся схемой, предложенной проф.

Выделяются три стадии жизненного цикла ИС – предпроектная , проектирование и разработка и внедрение . Стадии состоят из этапов, на каждом из которых оценивается роль экономистов различных управленческих звеньев и консультантов-экспертов (рис. 2.1).

Предпроектная стадия предшествует работам по созданию ИС.

Рис. 2.1. Роль и место специалистов-экономистов на стадиях жизненного цикла ИС

На этой стадии значительной является роль экономистов-управленцев высшего звена (++++). Именно они принимают решение о необходимости автоматизации информационных процессов предприятия и разработки ИС в связи с невозможностью эффективной обработки все возрастающих массивов информации традиционными способами. Однако значимой является роль и экономистов-консультантов, выступающих экспертами (+++). Требуется выполнить всестороннее системное аналитическое исследование предметной области:

    уяснить общие цели и структуру предприятия как исследуемой системы, проблематику решаемых задач, характер информационных процессов; определить перечень задач структурных подразделений системы, установить общие закономерности и особенности управляющих воздействий и потоков информации между ними и внешней средой; изучить сущность и традиционные технологии решения конкретных задач, определить источники и потребители информации для каждой из задач; определить объемы потоков информации, их изменчивость, распределение во времени, формы представления входных и выходных данных; оценить возможности автоматизации процессов хранения и обработки данных; выбрать модель хранения данных в базе или хранилище данных; определить программно-технические средства обеспечения разработки автоматизированной ИС и защиты информации и информационных потоков; определить возможные способы и средства автоматизированного решения прикладных задач; выполнить предварительную оценку предполагаемых финансово-экономических и материальных затрат и людских ресурсов для создания ИС; дать прогноз о сроках разработки ИС.

По результатам системного анализа исследуемой предметной области при наличии положительных оценок эффекта от перевода к автоматизированному решению задач разрабатывается технико-экономическое обоснование (ТЭО) и принимается окончательное решение на проектирование ИС и разработку технического задания (ТЗ). Эффект от перевода считается положительным, если в результате достигается хотя бы один из факторов: экономия денежных затрат, сокращение времени решения задач, повышение качества решения или улучшение условий труда.

От тщательности действий на предпроектной стадии при разработке ТЗ, согласованности исполнителей – привлеченных IT-специалистов, которым поручена разработка ИС, и экономистов, достоверности полученных оценок, обоснованности решений, представленных утверждение руководителю, во многом зависит будущая эффективность применения ИС БУ. Действия экономистов здесь оцениваются достаточно высоко: управленцы высшего звена – (++), среднего звена – (+++), низшего звена – (+), консультанты-эксперты – (+++).

2.2. Проектирование и разработка информационной системы

На данной стадии основная роль принадлежит IT-специалистам, выполняющим разработку ИС. Однако, как при разработке технического, так и рабочего проектов, важным является участие экономистов.

Специалисты-экономисты низшего и среднего звеньев контактируют с IT-специалистами, раскрывая им особенности решения экономических задач , применения справочно-нормативных документов, указывая на формы финансово-экономической отчетности, объемы электронного документооборота, выступая консультантами и оценщиками на этапах отладки и тестирования ИС. Например, бухгалтеры на этапе создания ИС БУ могут оценить правильность расчета заработной платы специалистам предприятия в соответствие с действующими нормативными документами, тарифными разрядами, должностными окладами , надбавками, премиальными, нахождением в отпуске, на больничном и т. п.

Кроме того, специалисты-экономисты на этой стадии знакомятся с проектом эксплуатационной документации, разрабатываемой на ИС, и высказывают свои предложения и замечания.

Высшая оценка на стадии проектирования иразработки ИС у экономистов среднего звена – (+++), далее идут экономисты низшего звена – (++), затем высшего – (+).

Оценка консультантов-экспертов незначительна – (+- –).

2.3. Внедрение информационной системы

На этапе внедрения ИС выполняются приемо-сдаточные испытания ИС, затем – опытная и промышленная эксплуатация. В состав комиссий по выполнению указанных работ включаются наиболее подготовленные специалисты-экономисты различных звеньев управления. Выполняется тщательная проверка функционирования подсистем ИС – с тестовыми, специально подобранными, а затем и реальными данными. Оцениваются возможности и характеристики ИС с требованиями, заявленными в ТЗ.

До ввода ИС в промышленную эксплуатацию процесс может занимать от нескольких недель до нескольких месяцев, а то и года. Каждый этап стадии завершается подписанием акта приемки.

На стадии внедрения ИС особенно велика роль экономистов. Деятельность специалистов высшего звена оценивается в ходе приемо-сдаточных испытаний высшим баллом – (++++), в ходе опытной и промышленной эксплуатации – (+). Специалисты среднего звена и консультанты-эксперты в ходе приемо-сдаточных испытаний имеют оценку (+++), специалисты низшего звена – (+). На этапах опытной и промышленной эксплуатации выше роль специалистов низшего звена – (+++); оценка специалистов среднего звена – (++); роль экспертов-консультантов незначительна – (+-–).

Таким образом, на всех стадиях и этапах жизненного цикла ИС существенной является роль экономистов различных звеньев управления.

Заключение

Жизненный цикл информационных систем бухгалтерского учета может быть представлен различными моделями жизненного цикла. На различных стадиях и этапах жизненного цикла ИС БУ существенной является роль специалистов-экономистов.

Экономисты высшего звена управления играют решающую роль на ключевых этапах – принятии решения о создании ИС и приемке ее в эксплуатацию.

Роль экономистов среднего звена существенна на всех стадиях и этапах жизненного цикла ИС, решение о создании которой принято.

Роль специалистов низшего звена возрастает в ходе эксплуатации ИС, а значение экспертов неоценимо на предпроектной стадии и проведении приемо-сдаточных испытаний.

Литература

1. Экономическая информатика: Учебник / Под ред. . -2-е изд. –М.: Финансы и статистика, 2004. – 592 с.

2. Воройский. Энциклопедический систематизированный словарь-справочник. (Введение в современные информационные и телекоммуникационные технологии в терминах и фактах). - М.: 2007.

3. Липаев программного обеспечения. –М.: Финансы и статистика, 19 с.

4. Лобанова Т. Жизненный цикл информационных систем – выберем стандарты, выстроим методологию. – В журн. Оборудование, сентябрь, 2005. с.

5. Орлик С. Введение в программную инженерию и управление жизненным циклом ПО. –М.: 2005. sorlik.

6. Харитонов лекций. –М.: 2006 – 2007.

7. Чистов к дисциплине «Информационные системы в экономике». –М.: 2006.

ISO - International Organization of Standardization - Международная организация по стандартизации, IEC - International Electro technical Commission - Международная комиссия по

Из рабочей учебной программы:

Тема 2. Стандарты и нормативные руководства по системной и программной инженерии.

Стандарт ISO/IEC 15288 «Системная инженерия - процессы жизненного цикла систем".

ГОСТ 34: Комплекс стандартов на автоматизированные системы.

Ключевые идеи системной инженерии: системный подход, жизненный цикл системы, инжиниринг требований, архитектурный дизайн, процессный подход, проектный подход.

2.1. Стандарт ISO 15288 «Системная инженерия - процессы жизненного цикла систем".

2.2. Жизненный цикл системы.

2.3. Представления жизненного цикла системы.

2.4. Жизненный цикл информационной системы

2.5. Модели жизненного цикла

2.6. Выбор модели жизненного цикла

2.1. Стандарт iso 15288 «системная инженерия - процессы жизненного цикла систем".

Системная инженерия применяется для решения проблем, связанных с ростом сложности рукотворных систем. Стандарт ISO 15288, описывающий методы системной инженерии, предписывает иметь описание жизненного цикла системы и его практик. Такое описание требуется для успешного продвижения системы по жизненному циклу. Но стандарт не указывает на методы, с помощью которых требуется создавать подобное описание.

Задачи стандарта:

    Дать возможность организациям (внешним и внутренним контракторам) договориться о совмещении замыслов, процессов проектирования, создания, эксплуатации и вывода из эксплуатации самых разных рукотворных систем – от зубочисток до атомных станций, от систем стандартизации до корпораций

    Внедрить в практику организации ряд ключевых идей системной инженерии:

    • системного подхода

      жизненного цикла

      инжиниринга требований

      архитектурного дизайна

      процессного подхода

      проектного подхода

      культуры контрактации

Ис т ория создания

    Совместная разработка ISOиIEC, активное участиеINCOSE

    Начало работ в 1996, версии в 2002, 2005 (ГОСТ Р ИСО/МЭК 15288-2005), 2008

    Призван гармонизировать так называемое «болото стандартов» системной инженерии (многочисленные стандарты, принятые различными военными ведомствами, государствами, отраслевыми организациями стандартизации)

К разработке стандарта были привлечены специалисты различных областей: системной инженерии, программирования, управления качеством, человеческими ресурсами, безопасностью и пр. Был учтен практический опыт создания систем в правительственных, коммерческих, военных и академических организациях. Стандарт применим для широкого класса систем, но его основное предназначение - поддержка создания компьютеризированных систем.

2.2. Жизненный цикл системы

Аббревиатура русск: ЖЦ

Аббревиатура англ: LC (Life Cycle )

Русский: «жизненный цикл» . Английское life cycle в технике ранее означало и переводилось как «срок службы», и иногда даже «срок службы до первого капитального ремонта». «Жизненный цикл» -- это относительно новый перевод. Иногда «цикл» переводят как «период», но такой перевод не устоялся (хотя он и точнее в данном случае: «период жизни» системы). Слово «цикл» не должно смущать – ничего циклического в жизненном цикле нет. Слово «цикл» имеет смысл «типичности», говоря о том, что то же самое происходит и с другими системами.

Формально: жизненный цикл – это смена состояний системы (эволюция системы) в период времени от замысла до прекращения её существования.

Система и жизненный цикл -- близнецы-братья. Мы говорим система -- подразумеваем жизненный цикл, мы говорим жизненный цикл -- подразумеваем система.

Определения.

    Определение стандарта ISO/IEC 15288:2008 (Определение: life cycle -- evolution of a system, product, service, project or other human-made entity from conception through retirement (ISO 15288, 4.11):

жизненный цикл (ЖЦ) – это эволюция системы, продукции, услуги, проекта или иного рукотворного объекта от замысла до прекращения использования.

    Определение стандарта ISO 15704 (Industrial automation systems - Requirements for enterprise-reference architectures and methodologies Системы промышленной автоматизации. Требования к архитектуре эталонных предприятий и методологии. Описывает эталонную архитектуру предприятия и средства реализации проектов в рамках полнрго жизненного цикла предприятия):

жизненный цикл (ЖЦ) – это конечный набор основных фаз и шагов, которые система проходит на протяжении всей истории существования.

Каждая система, вне зависимости от ее вида и масштаба, проходит весь свой жизненный цикл согласно некоторому описанию. Продвижение системы по частям этого описания и есть жизненный цикл системы. Описание жизненного цикла, таким образом, - это концептуальная сегментация по стадиям , способствующим планированию, разворачиванию, эксплуатации и поддержке целевой системы.

Стадии (табл. 2.1) представляют наиболее крупные периоды жизненного цикла, ассоциируемые с системой, и соотносятся с состояниями описания системы или реализацией системы как набора продуктов или услуг. Стадии описывают основные контрольные точки продвижения и успехов системы по ходу жизненного цикла. Такие сегменты дают упорядоченное продвижение системы через установленные пересмотры выделения ресурсов, что снижает риски и обеспечивает удовлетворительное продвижение. Основной причиной применения описаний жизненного цикла является потребность в принятии решений по определенным критериям до продвижения системы на следующую стадию.

Таблица 2.1

Стадии создания систем (ISO/IEC 15288)

п./п

Стадия

Описание

Формирование концепции

Анализ потребностей, выбор концепции и проектных решений

Разработка

Проектирование системы

Реализация

Изготовление системы

Эксплуатация

Ввод в эксплуатацию и использование системы

Поддержка

Обеспечение функционирования системы

Снятие с эксплуатации

Прекращение использования, демонтаж, архивирование системы

Таблица 2.1

Определения.

1. Определение стандарта ISO/IEC 15288:2008 (Определение: life cycle -- evolution of a system, product, service, project or other human-made entity from conception through retirement (ISO 15288, 4.11):

жизненный цикл (ЖЦ) – это эволюция системы, продукции, услуги, проекта или иного рукотворного объекта от замысла до прекращения использования.

2. Определение стандарта ISO 15704 (Industrial automation systems - Requirements for enterprise-reference architectures and methodologies Системы промышленной автоматизации. Требования к архитектуре эталонных предприятий и методологии. Описывает эталонную архитектуру предприятия и средства реализации проектов в рамках полнрго жизненного цикла предприятия):

жизненный цикл (ЖЦ) – это конечный набор основных фаз и шагов, которые система проходит на протяжении всей истории существования.

Каждая система, вне зависимости от ее вида и масштаба, проходит весь свой жизненный цикл согласно некоторому описанию. Продвижение системы по частям этого описания и есть жизненный цикл системы. Описание жизненного цикла, таким образом, - это концептуальная сегментация по стадиям , способствующим планированию, разворачиванию, эксплуатации и поддержке целевой системы.

Стадии (табл. 2.1) представляют наиболее крупные периоды жизненного цикла, ассоциируемые с системой, и соотносятся с состояниями описания системы или реализацией системы как набора продуктов или услуг. Стадии описывают основные контрольные точки продвижения и успехов системы по ходу жизненного цикла. Такие сегменты дают упорядоченное продвижение системы через установленные пересмотры выделения ресурсов, что снижает риски и обеспечивает удовлетворительное продвижение. Основной причиной применения описаний жизненного цикла является потребность в принятии решений по определенным критериям до продвижения системы на следующую стадию.

Комментарий: жизненный цикл – всегда жизненный цикл конкретной системы. Не бывает «жизненного цикла» кроме как в текстах стандартов, в жизни всегда «жизненный цикл X», где X – название целевой системы. Процессы жизненного цикла – это те процессы, которые акторы выполняют над/с системой, и которые меняют состояние системы, заставляя ее эволюционировать в ходе её жизненного цикла. «Управление жизненным циклом» -- общепринятое название подхода к описанию процессов жизненного цикла (а часто и название самой группы процессов жизненного цикла, описанных с использованием такого подхода).

У системы есть два основных представления: целевое (архитектурное, чаще всего структурное в своей основе, плюс процессы времени эксплуатации системы) и жизненного цикла (развертка во времени жизненного цикла - процессы обеспечивающих систем). Можно обсуждать, насколько каждое из этих представлений является частью другого, но для надлежащего описания системы всегда нужно использовать какое-то представление жизненного цикла.

Прежде всего, нужно различить жизненный цикл (иногда, ограничиваясь только инженерией, но не полным ЖЦ говорят также delivery process, изредка для софта -- software process) и другие "процессные представления" -- трансакции DEMO, логические "бизнес-процессы" (практики), workflows, проектные представления (подробнее -- http://ailev.livejournal.com/904643.html). Хотя есть множество подходов, при которых все эти разные аспекты описаний организации и методов ее работы смешиваются.

Модель жизненного цикла отражает различные состояния системы, начиная с момента возникновения необходимости в данной ИС и заканчивая моментом ее полного выхода из употребления. Модель жизненного цикла - структура, содержащая процессы, действия и задачи, которые осуществляются в ходе разработки, функционирования и сопровождения программного продукта в течение всей жизни системы, от определения требований до завершения ее использования.

Языков представления жизненного цикла и текстовых и графических нотаций для этих языков много, ограничимся для примера лишь следующими:\

· «Нарезанная колбаска»

· V-диаграмма

Нарезанная колбаска".

Просто перечисление стадий жизненного цикла их названиями, для выразительности названия упакованы в отрезки "колбаски" (рис.2.1)

Рисунок 2.1. Традиционное представление жизненного цикла

Вокруг традиционной «колбаски» могут указываться еще две дополнительных: как ЖЦ видят менеджеры (лица, управляющие проектом), и как ЖЦ видят инженеры(лица, реализующие проект) (рис.2.2)

Рисунок 2.2. Пример представления жизненного цикла

Жизненные циклы наблюдаются в историях отдельных товаров и потребностей, торговых марок, предприятий, целых индустрий и рынков. Жизненный цикл неотделим от конкретной системы, поэтому особенности разных систем порождают большое разнообразие экземпляров «колбасок» жизненных циклов (рис.2.3) .


Рис.2.3. Разнообразие жизненных циклов

Подобно живому организму, всякий продукт (товар или услуга) имеет свой жизненный цикл , который начинается с момента его «рождения» (или, возможно, с момента зарождения идеи) и заканчивается его «смертью», или изъятием из употребления.

Жизненный цикл ЭИС совокупность этапов, которые проходит ЭИС в своем развитии от момента принятия решения о ее создании до прекращения функционирования.

Жизненный цикл экономической информационной системы включает следующие этапы:

1) предпроектный;

2) проектирование логическое и техническое;

3) проектирование рабочее (физическое);

4) внедрение;

5) эксплуатацию;

6) изъятие.

Предпроектный этап включает в себя исследование и анализ системы управления компанией, выявляющие имеющихся информационных потребителей. Целью данного этапа является формирование требований к ИС, корректно и точно отражающих цели и задачи организации-заказчика. Чтобы специфицировать процесс создания ИС, отвечающей потребностям организации, нужно выяснить и четко сформулировать, в чем заключаются эти потребности. Для этого необходимо определить требования заказчиков к ИС и отобразить их на языке моделей в требования к разработке проекта ИС так, чтобы обеспечить соответствие будущей ИС целям и задачам организации.

Задача формирования требований к ИС является одной из наиболее ответственных, трудно формализуемых и наиболее дорогих и тяжелых для исправления в случае ошибки.

Современные инструментальные средства и программные продукты позволяют достаточно быстро создавать ИС по готовым требованиям. Но зачастую эти системы не удовлетворяют заказчиков, требуют многочисленных доработок, что приводит к резкому удорожанию фактической стоимости ИС. Основной причиной такого положения является неправильное, неточное или неполное определение требований к ИС на этапе анализа.

На этом этапе должны решаться проблемы, связанные с разработкой технического задания, плана мероприятий по подготовке объекта, включая подготовку персонала и финансирования. На данном этапе также осуществляется анализ осуществимости ИС, а именно рассматривается:

· эксплуатационная осуществимость – возможно ли создание данной ИС, насколько она будет удобно в эксплуатации и отвечать заданным требованиям;

· экономическая осуществимость – стоимость, эффективность с точки зрения пользователя;

Проектирование логическое и техническое – это разработка в соответствии со сформулированными требованиями и выявленными информационными потребностями системной и функциональной архитектуры ЭИС.

На этапе проектирования, прежде всего, формируются модели данных. Проектировщики в качестве исходной информации получают результаты анализа. Построение логической и физической моделей данных является основной частью проектирования базы данных. Полученная в процессе анализа информационная модель сначала преобразуется в логическую, а затем в физическую модель данных.

Параллельно с проектированием схемы базы данных выполняется проектирование процессов, чтобы получить спецификации (описания) всех модулей ИС. Оба эти процесса проектирования тесно связаны, поскольку часть бизнес-логики обычно реализуется в базе данных (ограничения, триггеры, хранимые процедуры). Главная цель проектирования процессов заключается в отображении функций, полученных на этапе анализа, в модули информационной системы. При проектировании модулей определяют интерфейсы программ: разметку меню, вид окон, горячие клавиши и связанные с ними вызовы.

Кроме того, на этапе проектирования осуществляется также разработка архитектуры ИС, включающая в себя выбор платформы (платформ) и операционной системы (операционных систем). В неоднородной ИС могут работать несколько компьютеров на разных аппаратных платформах и под управлением различных операционных систем.

Кроме выбора платформы, на этапе проектирования определяются виды архитектуры:

· архитектура «файл-сервер» или «клиент-сервер»;

· база данных централизованная или распределенная. Если база данных будет распределенной, то какие механизмы поддержки согласованности и актуальности данных будут использоваться;

· серверы, параллельные или одиночные для баз данных (в целях достижения необходимой производительности) и т.д.

Этап проектирования завершается разработкой технического проекта ИС.

Проектирование рабочее (физическое) включает создание и настройку программ, наполнение баз данных, создание рабочих инструкций для персонала. Проектирование заканчивается созданием рабочего проекта.

Рабочий проект – это техническая документация, утвержденная в установленном порядке, содержащая уточненные данные и детализированные общесистемные проектные решения, программы и инструкции по решению задач, а также уточненную оценку экономической эффективности автоматизированной системы управления и уточненный перечень мероприятий по подготовке объекта к внедрению.

В ходе опытного и промышленного внедрения осуществляется комплексная отводка системы и обучение персонала.


Внедрение системы – это процесс постепенного перехода от существующей ЭИС к новой, предусмотренной документацией рабочего проекта на всю систему. Внедрение отдельных задач и подсистем может проводиться параллельно с разработкой рабочего проекта на всю систему.

Основными этапами внедрения системы являются:

· подготовка объекта к внедрению системы;

· сдача задач и подсистем в опытную эксплуатацию;

· проведение опытной эксплуатации;

· сдача задач, подсистем, системы в целом в промышленную эксплуатацию.

Опытная эксплуатация ИС заключается в проверке алгоритмов, программ и звеньев технологического процесса обработки данных в реальных условиях. Она проводится для следующего:

· окончательной отладки программ и отработки технологического процесса решения задач;

· проверки подготовленности информационной базы;

· отработки взаимосвязи задач системы;

· приобретения навыков работы персоналом предприятия;

· настройки всей системы в целом и устранения выявленных недочетов.

После окончания опытной эксплуатации системы составляется отчет о внедрении. При положительных результатах опытной эксплуатации система сдается в промышлен­ную эксплуатацию.

Эксплуатация ЭИС – ее использование в реальных условиях. В ходе эксплуатации также осуществляется сопровождение, анализ работы системы, исправление ошибок и недоработок, оформление требований и разработка планов по модернизации и расширению системы.

Изъятием ЭИС из эксплуатации называется полное изъятие ЭИС из эксплуатации или существенная модернизация, позволяющая говорить о создании принципиально новой информационной системы.

Существующие модели жизненного цикла определяют порядок исполнения этапов в ходе разработки, а также критерии перехода от этапа к этапу. В соответствии с этим наибольшее распространение получили три следующие модели жизненного цикла:

1) каскадная модель, предполагающая переход на следующий этап после полного окончания работ по предыдущему этапу;

2) поэтапная модель с промежуточным контролем, т.е. итерационная модель разработки с циклами обратной связи между этапами. Преимущество такой модели заключается в том, что межэтапные корректировки обеспечивают меньшую трудоемкость по сравнению с каскадной моделью, однако время жизни каждого из этапов растягивается на весь период разработки;

3) спиральная модель делает упор на начальные этапы ЖЦ: анализ требований, проектирование спецификаций, предварительное и детальное проектирование. На этих этапах проверяется и обосновывается реализуемость технических решений путем создания прототипов. Каждый виток спирали соответствует поэтапной модели создания фрагмента или версии программного изделия, на нем уточняются цели и характеристики проекта, определяется его качество, планируются работы следующего витка спирали. Таким образом, углубляются и последовательно конкретизируются детали проекта и в результате выбирается обоснованный вариант, который доводится до реализации.

На всех этапах жизненного цикла ЭИС большую роль играют специалисты экономического профиля, которые:

· формируют требования к будущей информационной системе или плану ее модернизации;

· осуществляют обоснование и расчет экономической эффективности отдельных решений, используемых в составе ИС и системы в целом;

· участвуют непосредственно в процессе создания ЭИС, помогая моделировать бизнес-процессы и соответствующие им информационные процессы, в том числе и работники предприятия, для которого создается ИС, в соответствии с одним из принципов создания ИС.

· участвуют в отладке системы при передаче ее в эксплуатацию;

· (эксперты) используют свои знания и опыт для наполнения баз данных и знаний;

· на этапе внедрения разрабатывают инструкции и обучают персонал, применяя свои знания и практический опыт.

Исследования последних лет показали, что повышение производительности за счет использования информационных технологий достигается очень редко. Главная причина в том, что новые информационные технологии часто являются зеркальным отображением предыдущих методов и процессов. Осознание этого привело к

появлению нового направления в области управления – реинжиниринга бизнес-процессов, под которым понимается улучшение или совершенствование уже существующего бизнес-процесса за счет использования информационных технологий с параллельным фундаментальным переосмыслением и радикальной переориентацией деловых процессов для достижения резких улучшений важных показателей (повышения производительности, улучшения качества, снижения себестоимости).